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Abstract
We review recent theoretical progress on the statistical mechanics of error
correcting codes, focusing on low-density parity-check (LDPC) codes in
general, and on Gallager and MacKay–Neal codes in particular. By
exploiting the relation between LDPC codes and Ising spin systems with multi-
spin interactions, one can carry out a statistical mechanics based analysis
that determines the practical and theoretical limitations of various code
constructions, corresponding to dynamical and thermodynamical transitions,
respectively, as well as the behaviour of error-exponents averaged over the
corresponding code ensemble as a function of channel noise. We also
contrast the results obtained using methods of statistical mechanics with those
derived in the information theory literature, and show how these methods
can be generalized to include other channel types and related communication
problems.

PACS numbers: 02.50.−r, 75.10.Hk, 89.70.+c, 89.20.Kk

1. Introduction

1.1. Error correction

Electronic communication plays an important role in modern society and has a profound
impact on the way we live. It appears in various forms and in a broad range of applications,
from mobile and satellite communication to cable TV and the Internet.

Two features common to most modern digital communication systems are the need for
efficient source and channel coding methods. Source coding relates to the compression
of redundant information (e.g., pictures, music), even at the expense of fidelity (lossy
compression); while channel coding relates to the introduction of some controlled redundancy
prior to transmission in order to protect the information against corruption in a noisy
transmission medium (e.g., deep space, atmosphere, optical fibres). In this review we
mainly focus on error correction (channel coding) although we also mention applications
of statistical mechanics analysis to source coding, multi-terminal communication channels,
cryptography and other areas of information theory.
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Figure 1. In the top figure we illustrate what happens when a word is transmitted without error
correction. White circles represent possible word vectors; the black circle represents the word
to be sent. The channel noise corrupts the original word, represented by a drift in the top right
picture. The dashed circles indicate decision boundaries in the receiver; in the case depicted,
the corruption leads to a transmission error. In the bottom figure we show qualitatively an error-
correction mechanism. The redundant information changes the space geometry, increasing the
distance between words. The same drift as in the top figure does not result in a transmission error.

In his 1948 papers Shannon [Sha48] proved general results on the limits of compression
and error correction by setting up the framework for what is now known as information theory
(IT). Shannon’s channel coding theorem states that error-free communication is possible if
some redundancy is added to the original message in the encoding process. A message encoded
at rates R (message information content/code-word length) up to the channel capacity Cchannel

can be decoded with a probability of error that decays exponentially with the message length.
Shannon’s proof is non-constructive and assumes encoding with unstructured random codes
and impractical decoding schemes (requiring a computing effort that grows non-polynomially
with the codeword length) [CT91]. Finding practical codes capable of reaching the coding
limits established by Shannon has been one of the central issues in coding theory ever since;
and only recently, due to some ingenious code designs, are we within reach of closing the
remaining gap to the bounds set by Shannon.

Figure 1 illustrates the problem of channel coding. On the top left of figure 1 we represent
the space of words (a message is a sequence of words), each circle represents one sequence
of binary bits. The word to be sent is represented by a black circle in the left-side figure.
Corruption by noise in the channel is represented in the top right figure as a drift in the original
word location. The circle around each word represents a decision boundary sphere for the
particular word; any signal inside a certain decision region is recognized as representing the
word at the centre of the sphere. In the case depicted in figure 1, the drift caused by noise
places the received word within the decision boundary of another word vector, causing a
transmission error. Error-correction codes are based on mapping the original space of words
onto a higher dimensional space in a way that the typical distance between encoded words
increases. The collection of all encoded words (codewords) constitutes a codebook. If the
original space is transformed, the same drift shown in the top of figure 1 is insufficient to push
the received signal outside the decision boundary of the transmitted codeword (bottom figure).

Good codes should be as short as possible, yet should clearly allow for a large number of
codewords (for a large set of words), and decision spheres must be as large as possible (for
large error-correction capability). The general coding problem consists of optimizing one of
these conflicting requirements given the other two.
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1.2. Low-density parity-check codes

For a long while, the best practical codes known were variants of Reed–Solomon codes which
form the basis for most current technological standards (e.g., in deep-space communications
[MS77, VO79]). The situation changed dramatically about a decade ago with the introduction
of Turbo codes [BGT93]. These codes are composed of two convolutional codes working
in parallel and show a practical performance close to Shannon’s bound when decoded with
iterative methods known as probability propagation [Pea88] or belief propagation; these
iterative methods were first studied in the context of coding by Wiberg [Wib96] (excluding
Gallager’s original formulation [Gal62, Gal63]). The area experienced a second dramatic
development when Gallager’s low-density parity-check codes (LDPC) were rediscovered by
MacKay and Neal in 1995 [MN95, Mac99]; this led to renewed activity in the general area
of low-density parity-check codes [RU01a, RSU01, LMSS01] leading to the design of record
breaking codes (e.g., [Chu00, Dav99, Dav98]) and greater understanding of their properties.

Gallager codes were first proposed in 1962 [Gal62, Gal63] and then were all but forgotten
soon after due to computational limitations of the time and due to the success of convolutional
codes. LDPC codes are much easier to understand and analyse than Turbo codes, and arguably
represent the future of error correction. Throughout this review we concentrate on LDPC error
correcting codes in general and Gallager and MacKay–Neal codes in particular.

1.3. Information theory and statistical mechanics of coding

The study of error-correcting codes is clearly one of the main topics in information theory.
While the main properties of communication channels can be easily obtained from simple
entropic considerations [CT91], the construction and analysis of practical codes, particularly
LDPC codes of finite connectivity, is rather difficult. In most cases, practical and/or theoretical
limitations are derived, in the infinite codeword limit, in the form of bounds as direct average
properties are difficult to obtain.

The statistical mechanics of codes represents a completely different approach. By
exploiting similarities between error-correcting codes and spin-glass models, as well as
methods developed in the study of Ising spin systems, one carries out exact averages over
code ensembles, possible messages and noise vectors to calculate the free energy of a given
system; studying its properties one obtains exact results for their practical and theoretical
limitations.

In section 2 we provide a general description of the communication channels studied and
the notation used; in section 3 we briefly review several LDPC code constructions, followed
by a more detailed review of recent statistical mechanics based analyses and their relation to
analyses carried out in the information theory community (section 4). In section 5 we focus on
analytical methods for obtaining the theoretical limitations of codes used in the IT literature
and their equivalents in the statistical mechanics based approach; applications of LDPC codes
to a range of other problems in information theory and cryptography will be reviewed in
section 6 followed by a brief summary.

2. Communication channels

A general communication scenario is described in figure 2(a). It is based on encoding a K-
dimensional message s to an N-dimensional codeword t which is then transmitted through a
noisy communication channel. Codeword corruption during transmission can be described as
a probabilistic process defined by the conditional probability P(r|t), where t and r represent
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Figure 2. (a) Mathematical model for a communication system. (b) binary symmetric channel
(BSC). (c) Binary erasure channel (BEC). (d ) Real-valued symmetric channels (Gaussian–AWGN,
Laplacian etc.).

transmitted and received messages, respectively. We assume no interference effects between
codeword components, binary messages/codewords ({0, 1}) and a memoryless channel, so that
P(r | t) = ∏N

i=1 P(ri | ti). The received codeword r is then decoded to retrieve the original
message s. In this review, we will consider several channel types described schematically in
figures 2(b)–(d), although other channels can also be considered and analysed using similar
approaches. The differences between the various channels stem from the corruption probability
P(rj | tj ). The binary symmetric channel (BSC), described schematically in figure 2(b), is
defined by binary input and output alphabets and by the conditional probability

P(r �= t | t) = p P (r = t | t) = 1 − p. (1)

In the binary erasure channel (BEC) (figure 2(c)), binary codeword bits arrive uncorrupted
with probability 1 − p; no information is given in the case of corruption as indicated by the
‘?’; symbol. The conditional probability of a received bit being identical to the transmitted
one is, therefore, P(r = t | t) = 1 − p. In the case of channels with real-valued noise,
described in figure 2(d), binary transmitted codeword bits become real received values. Such
communication channels are described by some conditional probability P(r | t); which, for
instance, in the case of a additive-white-Gaussian-noise channel (AWGN), takes the form

P(r | t) = 1√
2πσ 2

exp

(
−1

2

(r − t)2

σ 2

)
(2)

where σ 2 represents the variance of the Gaussian noise.
The maximal information per bit that the channel can transport defines the channel

capacity [CT91] and can be easily derived from entropic considerations; for perfect retrieval,
the source vector binary entropy plus that of the noise vector must be smaller than the codebook
entropy. Since all codewords may be used with equal probability, the latter (per symbol) equals
the (base 2) logarithm of the alphabet size, i.e. 1 in the case of a binary alphabet {0, 1}. The
entropy of any binary vector is calculated directly from the probability of having a value of
0/1. For instance, for the binary noise vector (1) the entropy per bit becomes

H2(p) = −p log2(p) − (1 − p) log2(1 − p) (3)

and the BSC capacity is given by

CBSC = 1 − H2(p). (4)
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Similarly, for the BEC the channel capacity is

CBEC = 1 − p. (5)

Channel capacity expressions for real-valued noisy channels are slightly more complex; for
instance, Shannon’s bound in the case of AWGN is given by

CAWGN = 1
2 log2(1 + SNR) (6)

where SNR is the signal to noise ratio, defined as the ratio of energy per bit of the source
(squared amplitude) over the spectral density of the noise (variance). If one constrains the
encoded bits to binary values {±1} (binary-input additive-white-Gaussian-noise channel—
BIAWGNC) the capacity becomes

CBIAWGNC =
∫

drP (r | 1) log2 P(r | 1) −
∫

drP (r) log2 P(r) (7)

where P(r | t) is as in equation (2).
The analysis presented in this review focuses on the binary symmetric channel but can be

easily extended to other channel types [KS99a, VSK99, TS03c, SvMS03, Mon01, FLMRT02]
that are arguably of greater practical relevance [VO79, CT91].

3. Low-density parity-check codes

Parity check codes have been used in various error-correction mechanisms almost from the
very beginning of the field. One of the most well-known parity check mechanisms is the
Hamming code [CT91] and its generalization to the family of linear codes.

Most practical linear codes tend to offer a relatively low error protection for a given
transmission ratio, far below the Gilbert–Varshamov distance [Var57, Gil52], bounding all
binary linear codes. The performance improves as the number of elements summed in each
check grows; however, the decoding process becomes computationally hard and unfeasible
for a practical codeword length.

3.1. Gallager’s code

LDPC codes were originally introduced by Gallager in 1962 [Gal62]. They rely on a sparse
linear transformation of binary messages at the decoding stage, making it computationally
feasible; while encoding relies on a dense matrix generated by the inverse of the sparse linear
transformation. The significance of Gallager’s discovery was not fully appreciated at the time
due to the limited computing resources at the time as well as the increasing popularity of
convolutional codes that require only a simple system of shift registers to operate effectively.

Gallager’s code is defined by a binary matrix H = [A | B], concatenating two very sparse
matrices known to both sender and receiver, with B (of dimensionality (N − K) × (N − K))
being invertible and A of dimensionality (N − K) × K . The matrix H can be either random
or structured, characterized by the number of non-zero elements per row/column. These
numbers, which we denote as k and j , respectively, can be constants for all rows/columns
(defining a regular code) or may vary from row to row (or column to column) giving rise to
an irregular code.

Irregular codes show superior performance with respect to regular constructions [RU01a,
RSU01, KS99b, KS00b, VSK00b] if they are constructed carefully. However, to simplify
the presentation, we focus here on regular constructions; the generalization of the methods
presented here to irregular constructions is straightforward [VSK02, VSK00b].
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Encoding refers to the mapping of a K-dimensional binary vector s ∈ {0, 1}K (original
message) to N-dimensional codewords t ∈ {0, 1}N (N > K) by the linear product

t = GT s (mod 2) (8)

where all operations are performed in the field {0, 1} and are indicated by (mod 2). The
generator matrix is of the form

G = [I | B−1A] (mod 2) (9)

where I is the K × K identity matrix. By construction HGT = 0 (mod 2) and the first K bits
of t correspond to the original message s. Note that the generator matrix is dense and each
transmitted parity-check carries information about O(K) message bits.

In the case of unbiased messages, with equal bit probability of having the values 1
and 0, the code rate corresponds to the ratio of message to codeword bits R = K/N .
Counting the number of unit elements in the matrix H one easily establishes the relation
j = (1 − K/N)k, from which the code rate expression R = (1 − j/k) can be derived. In the
case of biased messages, one should replace the number of bits K by the logarithm (base 2) of
the corresponding entropy.

To demonstrate the way in which Gallager’s code is utilized we consider the BSC, where
the encoded vector t is corrupted by a noise vector n ∈ {0, 1}N with components independently
drawn from

P(n) = (1 − p)δ(n) + pδ(n − 1). (10)

The received vector takes the form

r = GT s + n (mod 2). (11)

Decoding is carried out by multiplying the received message by the matrix H to produce
the syndrome vector

z = Hr = Hn (mod 2). (12)

Decoding refers to finding an estimate of n knowing z and H; this, of course, enables one
to obtain the original message vector s (the first K bits of r + n (mod 2)). The following
estimators may be employed in principle:

• Maximum a posteriori (MAP) is based on selecting the noise vector of the lowest
weight (smallest number of ‘1’s) that obeys all parity checks (12); this corresponds
to mapping the received vector onto the nearest codeword. It also implies maximization
of the posterior probability P(n|z,H). The noise vector MAP estimator, which is
also the maximum likelihood (ML) estimator of the codeword, minimizes the block error
probability [Iba99] (i.e. of having any errors in a decoded message) but is computationally
demanding and cannot be used in practice.

• Marginal posterior maximizer (MPM) is selecting the most probable noise-bit estimator,
while marginalizing over all other bits (i.e. summing up over the probabilities of all
other variables). This relies on choosing the right prior for the estimated noise vector
bits; it has the property of minimizing the bit error probability [Iba99] (average error
probability per bit) . MPM is in general equally difficult to MAP decoding. However,
good approximation methods exist for codes that can be mapped onto sparse graphs,
leading to successful decoding in a broad range of noise values.

In practice, decoding is carried out mainly by employing some message passing algorithm
such as belief propagation (BP) [Pea88] (also known as probability propagation, Bayesian
networks) and its variations.

Irregular Gallager codes decoded using BP offer the best performance to date; these
results follow from the work of [RSU01, RSU01, RU01b].
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3.2. Sourlas code

In 1989 Sourlas pointed to the relation between simple LDPC codes and spin-glass models
[Sou89]. Although the codes presented by Sourlas are of limited practical relevance they
made a significant contribution to establishing the links between statistical mechanics and
information theory.

The code presented by Sourlas is strongly related to both Gallager and Mackay–Neal (MN)
codes. It is based on a regular generator matrix G giving rise to a codeword in the form (11).
The decoding problem can be mapped to known physical systems, Sourlas’s original paper
focuses on the Sherrington–Kirkpatrick [SK75, KS78] and random energy models [Der81,
Saa98], where their performance can be analysed.

The results presented are of little practical significance since sparse generator matrices of
the form presented (e.g., with two non-vanishing elements per row, k = 2) result in a non-
vanishing error probability; while using dense generator matrices, which would potentially
allow for a perfect retrieval of messages, is unfeasible due to decoding difficulties (in fact,
decoding codes with k � 3 is already difficult).

3.3. MN code

MacKay and Neal introduced the MN codes in 1995 [MN95, Mac99], a variation on Gallager
codes which they discovered independently, giving rise to renewed interest in LDPC codes.

MN codes are defined by two very sparse matrices; the main difference with respect to
Gallager codes is that information on both noise and signal is incorporated in the syndrome
vector. Both encoding and decoding follow a similar procedure as in (8)–(12) except that the
generator and decoding matrices take a different form.

The generator matrix G is an N × K dense matrix defined by

G = B−1A (mod 2) (13)

with B being an N × N binary invertible sparse matrix and A an N × K binary sparse matrix.
Also MN codes come in both regular and irregular forms; again, for brevity, we concentrate
here on regular codes, where the number of unit elements per row/column in A is k and j ,
respectively, and l in B (for both row/column).

Using communication through a BSC as an example, the transmitted vector t is then
corrupted by a binary noise vector n ∈ {0, 1}N as in (10) and the received vector takes
the same form as in (11). Decoding is performed by matrix multiplication of the corrupted
codeword by the matrix B, giving rise to the syndrome vector

z = Br = As + Br (mod 2). (14)

Estimating the original message and noise vector from the syndrome z and matrices A and B
is carried out in the same way as in Gallager codes.

Specific constructions of MN codes, especially those using Galois fields, rather than the
basic binary representation, show very good performance [Dav99, Dav98].

3.4. Designing capacity approaching codes

The main breakthrough in the design of capacity approaching codes came with the work
of Richardson and Urbanke [RSU01]. They analysed a BP-based decoding mechanism,
by considering a macroscopic representation of the local fields, in the form of probability
distributions. The method, termed density evolution (DE), is employed for analysing the
decoding process and used to derive stability conditions which facilitate the design of capacity
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approaching codes. In fact, DE is similar to the Bethe approximation [MPV87] used in
the study of diluted systems. The relation between BP, density evolution and the Bethe
approximation has been pointed out in [KS98, VSK00a, YFW02] (see also section 4.4). Later
on, Chung et al [CRU01] presented a Gaussian-based approximated DE and applied it to the
design of capacity approaching codes.

Both DE and its Gaussian-based approximated version are aimed at designing irregular
constructions, we will therefore not review them in detail, but rather point to the similarities
between them and the statistical mechanics approach [VSK02].

3.5. Turbo codes

The exciting developments in the area of LDPC codes were preceded by the discovery of
another family of capacity approaching codes—the Turbo codes [BGT93]. The introduction
of Turbo codes created excitement in the information theory community as they represented
a step increase in performance towards saturating Shannon’s limit, with respect to previous
record holders—Bose–Chaudhuri–Hocquenghem and Reed–Solomon codes [McEon].

Turbo code is a variant of recursive convolutional codes; the latter are based on shift
registers (two in most cases, but more in general), used to generate codewords by a recursive
convolution of message bits. Various structures can be used in general, although in most cases,
the codeword comprises the original message segment and recursively convoluted segments
of it. Decoding can be carried out in various ways, in conjunction with the convolution
mechanism; for instance, by employing BP techniques for finding the most probable message
bits [Fre98, FM98].

In the case of turbo codes two vectors, representing the original message and a permuted
version of it, are used as inputs in a recursive convolutional procedure for generating the
codeword. The decoding process exploits correlations between bits of the message vector and
of the permuted vector, to obtain an estimate of the original message.

An additional advantage of turbo codes is that they can be easily implemented using
simple electronic circuits (shift registers); the drawback is that they are difficult to analyse
and systematically improve. Turbo codes were also analysed using methods of statistical
mechanics [MS00, Mon00]. A brief description of the convolutional mechanics context can
be found in [Nis01].

4. Statistical mechanics of coding

The link between error correcting codes and statistical mechanics was first pointed out by
Sourlas [Sou89]. He mapped a simple parity check code onto spin-glass models [Sou89],
focusing on the SK [SK75] and random energy models [Der81, Saa98] and showing that the
latter can be viewed as an ideal code capable of saturating Shannon’s bound at vanishing code
rates (without taking into account practical decoding considerations).

A few papers relating spin-glass models and coding have been published since then and
before the renewed interest in LDPC codes. Among them one should mention several studies
of finite temperature decoding [Ruj93, Nis93, Sou94] and the analysis of convolutional codes
via transfer-matrix methods and power series expansions [AL95].

The rediscovery of LDPC codes brought with it excitement also to the statistical
mechanics community. After extending Sourlas’s work to the case of finite code rates [KS99a,
VSK99], regular and irregular MN [KMS00b, MKSV00, VSK00b, KMSV00] and Gallager
[VSK00a, VSK01, Mon01, KSNS01, vMSK01, vMSK02, NKS01] codes have been studied
using statistical mechanics, and a link between the two frameworks has been established
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[KS98, VSK02, FLMRT02]. Insight gained from the statistical mechanics analysis also
contributed to the design of highly efficient irregular codes [KS99b, KS00b, KS00a, VSK02].

The similarity between Ising spin models and LDPC codes stems from the formulation
of the decoding problem. Employing the isomorphism between the additive Boolean group
({0, 1},⊕) and the multiplicative binary group ({+1,−1},×), whereby every addition in the
Boolean group corresponds to a unique product in the binary group and vice versa, one can
map the decoding problem to a Gibbs distribution by constructing an appropriate Hamiltonian.

The decoding problem depends on posteriors such as P(τ | r), where r is the observation
(received message or syndrome vector), and τ is a candidate estimate of the unknown original
message s (or alternatively a candidate noise vector from which an estimate of the noise can
be obtained). Applying Bayes’ theorem this posterior takes the form

Pαγ (τ | r) = 1

Z(r)
exp[ln Pγ (r | τ ) + ln Pα(τ )] (15)

where α and γ are hyper-parameters assumed to describe features such as the encoding scheme,
source distribution and noise level. This form suggests the following family of Gibbs measures
(β being the inverse temperature):

Pαβγ (τ | r) = 1

Z
exp[−βHαγ (τ ; r)] (16)

Hαγ (τ ; r) = −ln Pγ (r | τ ) − ln Pα(τ ). (17)

The received corrupted codeword depends on the coding mechanism and channel noise, both
of which represent the quenched disorder in the system.

The MAP estimator of s is clearly obtained at the ground state of the Hamiltonian, i.e. by
the sign of thermal averages ŝMAP

j = sgn(〈τj 〉β→∞) at zero temperature.
The MPM estimator corresponds to the sign of thermal averages ŝMPM

j = sgn(〈τj 〉β=1)

at a finite temperature, where true prior probability is assumed [Iba99]. This corresponds to
using the Nishimori condition [Nis80, Nis93, Nis01, Ruj93]; and in the notation we use here
to a temperature β = 1.

4.1. Gallager’s code

To provide a more detailed description of the analysis we have to focus on a specific code and
channel noise. We will explain the analysis for Gallager’s code and the BSC; the analyses of
the MN code and other channel types follow along the same lines.

A key point is the definition of an appropriate Hamiltonian; this can be done in various
ways. We identify two main components in the Hamiltonians that are necessary for the
analyses of all LDPC codes: a term that guarantees that all parity checks are satisfied, and a
prior term that provides some statistical information on the dynamical variables (τ ). In the
case of a BSC, the Hamiltonian takes the form

H =
∑

µ

χ(zµ = [Hτ ]µ) − F

N∑
j=1

τj . (18)

The parity checks χ(zµ = [Hτ ]µ) = 0 if parity check µ is obeyed by the vector τ
and χ(·) = ∞ otherwise; this corresponds to the parity checks (12). The coefficient
F = 1

2 ln[(1 − p)/p], in conjunction with the appropriate choice of temperature β = 1,
corresponds to the correct prior assumption for the noise variables τ .

An explicit expression for χ(·) in this case takes the form

χ(zµ = [Hτ ]µ) = − lim
γ→∞ γ

∑
〈i1···ik〉

D〈i1···ik〉
(
J〈i1···ik〉τi1 · · · τik − 1

)
(19)
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where the tensor J denotes the uncorrupted syndrome (12) in the binary (±1) representation
J〈i1,i2...iK 〉 = ni1ni2 . . . nik (ordered indices) and the tensor D represents the connectivities of
the matrix H; it takes the value 1 if the corresponding noise vector indices are chosen (i.e. all
corresponding indices of the matrix H are 1) and 0 otherwise. For the time being we assume
some fixed value for γ , but later on we will take the limit γ → ∞ to obtain the desired
properties of χ(·).

To simplify the analysis and decouple the two quenched variables (true noise vector n
and the parity check matrix H ) we use the gauge transformation τi 	→τini and J〈i1···ik〉 	→
J〈i1···ik〉ni1 · · · nik = 1. This maps any general message to the case ni = 1 ∀ i (ferromagnetic
configuration). We rewrite the Hamiltonian in the form:

Hγ (τ ) = −γ
∑

〈i1···ik〉
D〈i1···ik〉

(
τi1 · · · τik − 1

)− F

N∑
i=1

niτi . (20)

Once the Hamiltonian has been defined one can calculate the free energy of the system
and study emerging solutions for various choices of the parameters k, j and levels of channel
noise.

Two main methods can be employed for carrying out the analysis, the replica method for
diluted systems [KMS00b, MKSV00, FLMRT02] and the Bethe approximation [VSK99]. In
all calculations carried out under the Nishimori condition, the dominant solution is known to
be obtained under the replica symmetry (RS) assumption [NS01], providing similar results to
those obtained by the Bethe approximation [VSK99].

4.1.1. Replica calculation. Analysing the typical performance of Gallager codes is based on
similar studies of diluted systems [WS87a]. The aim is to compute the free energy:

F = − 1

β
lim

N→∞
1

N
〈lnZ〉D,n where Z = Trτ exp(−βHγ (τ ;n)) (21)

from which the typical macroscopic (thermodynamic) behaviour can be obtained using the
Hamiltonian (20). Quenched averages are carried out over the connectivity tensor D and the
true noise vector n under the following constraints: the connectivity tensor D〈i1···ik〉 ∈ {0, 1} is
a random symmetric tensor with the properties:∑

〈i1···ik〉
D〈i1···ik〉 = N − K

∑
〈i1=l,...,ik〉

D〈i1=l,...,ik〉 = j ∀l (22)

corresponding to the selection of N − K sets of indices. Noise vector bits ni take the values
−1/1 with probabilities p/1 − p, respectively.

To carry out the calculation one may use the replica approach

F = − 1

β
lim

N→∞
1

N

∂

∂ ln

∣∣∣∣
n=0

ln〈Zn〉D,n. (23)

Averages over the connectivity tensor 〈(· · ·)〉D and noise vector n take the forms

〈(· · ·)〉D = 1

N
∑
{D}

N∏
l=1

δ


 ∑

〈i1=l,i2,...,ik〉
D〈i1=l,...,ik〉 − j


 (· · ·)

= 1

N
∑
{D}

N∏
l=1

[∮
dZl

2π i

1

Z
j+1
l

Z

∑
〈i1=l,i2 ,...,ik 〉 D〈i1=l,...,ik 〉

l

]
(· · ·) (24)

and

〈(· · ·)〉n =
∑

n=−1,+1

[(1 − p)δ(n − 1) + pδ(n + 1)](· · ·) (25)
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respectively. Computing the averages and introducing auxiliary variables (order parameters)
through the identity∫

dqα1···αm
δ

(
qα1···αm

− 1

N

N∑
i

Ziτ
α1
i · · · ταm

i

)
= 1 (26)

gives rise to the following expression (details of the calculation can be found in [VSK02,
MKSV00]):

〈Zn〉D,n = 1

N

∫ (
dq0 dq̂0

2π i

)( n∏
α=1

dqα dq̂α

2π i

)
exp


Nk

k!

n∑
m=0

∑
〈α1···αm〉

Tmqk
α1···αm

−N

n∑
m=0

∑
〈α1···αm〉

qα1···αm
q̂α1···αm


 N∏

i=1

Tr{τα}

[〈
exp

[
Fβn

n∑
α=1

τα

]〉
n

×
∮

dZ

2π i

exp
[
Z
∑n

m=0

∑
〈α1···αm〉 q̂α1···αm

τα1 · · · ταm
]

Zj+1

]
(27)

where Tm = e−nβγ coshn(βγ )tanhm(βγ ) and N is a normalization factor.

4.1.2. Replica symmetric solution. The replica symmetric ansatz consists in assuming the
following form for the order parameters:

qα1···αm
=
∫

dx π(x)xm q̂α1···αm
=
∫

dx̂ π̂ (x̂)x̂m. (28)

By performing the limit γ → ∞, using (28) in (27), computing the normalization constant
N , integrating in the complex variable Z, computing the trace and using the replica identity,
n → 0, one finds

F = − 1

β
Extrπ,π̂

{
j

k
ln 2 + j

∫
dx dx̂ π(x)π̂(x̂) ln(1 + xx̂)

− j

k

∫ k∏
i=1

dxi π(xi) ln

(
1 +

k∏
i=1

xi

)

−
∫ j∏

i=1

d x̂i π̂ (x̂i)

〈
ln

[∑
σ=±1

eσβFn

j∏
i=1

(1 + σ x̂i)

]〉
n

}
. (29)

Variation with respect to the parameters yields the saddle-point equations:

π̂(x̂) =
∫ k−1∏

i=1

dxi π(xi)δ

[
x̂ −

k−1∏
i=1

xi

]
(30)

π(x) =
∫ j−1∏

l=1

dx̂l π̂ (x̂l)

〈
δ

[
x − tanh(βFn +

j−1∑
l=1

atanh x̂l)

]〉
n

where β = 1 and F = 1
2 ln
( 1 − p

p

)
(Nishimori temperature) for MPM decoding in BSC.

One of the most important macroscopic parameters we would like to find is the typical
overlap ρ = 〈 1

N

∑N
i=1 nin̂i

〉
D,n

between the estimate n̂i = sgn(〈τi〉β) and the actual noise ni ;
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Figure 3. (a) Pictorial representation of the RS free energy landscape changing with the noise level
p. Up to pd there is only one stable state F corresponding to the ferromagnetic state with ρ = 1.
At pd , a second stable suboptimal ferromagnetic state F ′ emerges with ρ < 1, as the noise level
increases, coexistence is attained at pc . Above pc, F

′ becomes the global minimum dominating
the system thermodynamics. (b) Numerically obtained suboptimal ferromagnetic solution πF ′ (x)

for the case k = 4, j = 3 and p = 0.2. Circles correspond to the experimental histogram obtained
by decoding with BP in 100 runs for ten different random connectivity matrices.

this can be calculated from

ρ =
∫

dh P (h) sgn(h)

(31)

P(h) =
∫ j∏

l=1

dx̂l π̂ (x̂l)

〈
δ

[
h − tanh

(
βFn +

j∑
l=1

atanh x̂l

)]〉
n

.

4.1.3. Typical performance. To study the various phases of the system one should first solve
the saddle point equations (30). In most cases this requires resorting to numerical methods,
except for some expected states such as the ferromagnetic and paramagnetic solutions. For
instance, the free energy for the ferromagnetic state (F ), where

πF(x) = δ[x − 1] π̂F(x̂) = δ[x̂ − 1] (32)

and at Nishimori’s temperature, is simply FF = −F(1 − 2p), with overlap ρ = 1.
The ferromagnetic solution is the only stable solution up to a specific noise level pd ,

which identifies the dynamical transition noise level, where meta-stable states first appear.
Above pd , numerical calculations show the emergence of a second stable solution with ρ < 1
(suboptimal ferromagnetic); and computationally efficient decoding algorithms cannot identify
the dominant solution in feasible time scales. A sketch describing the dependence of the free
energy landscape on the noise level is shown in figure 3(a) together with a typical numerically
obtained suboptimal ferromagnetic solution (figure 3(b)) for k = 4, j = 3 and p = 0.2. The
ferromagnetic state is always a stable solution of (30) and is present for all choices of noise level
and construction parameters j and k. It remains dominant up to the thermodynamic transition
point pc, above which the suboptimal ferromagnetic solution becomes the global minimum
dominating the system thermodynamics. The identification of both transition points pd and pc

provides a complete description of the typical performance of infinitely long Gallager codes.
Transitions for Gallager codes with k = 6 compared with Shannon’s bound (dashed line),

the information theory upper bound (full line) and thermodynamic transition points obtained
numerically (◦) are shown in figure 4(a). The thermodynamic transition point obtained, pc,
coincides, within numerical precision, with the information theoretic upper bound [Mac99].
The ferromagnetic and suboptimal ferromagnetic free energies are shown in figure 4(b), for
k = 4 and R = 1/4, defining the critical points pd and pc.
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Figure 4. (a) Transitions for Gallager codes with k = 6 compared with Shannon’s bound
(dashed line), the information theory upper bound (full line) and thermodynamic transition
obtained numerically (◦). Transitions obtained by Monte-Carlo integration of the saddle-point
equations (♦) and by simulations of BP decoding (+, M = 5000 averaged over 20 runs) are also
shown. Symbols are chosen larger than the error bars. (b) Free energies for k = 4, j = 3 and
R = 1/4. The full line corresponds to the free energy of thermodynamic states. Up to pd only the
ferromagnetic state is present. The ferromagnetic state then dominates the thermodynamics up to
pc , where thermodynamic coexistence with suboptimal ferromagnetic states takes place. Dashed
lines correspond to RS free energies of non-dominant meta-stable states.

However, the suboptimal ferromagnetic solution has been obtained under the RS ansatz;
one can show that above pd its entropy becomes negative and, therefore, unphysical (at pc

the entropy of the suboptimal ferromagnetic state becomes positive again). This is a clear
indication that the replica symmetric solution becomes unstable. A 1-step replica symmetry
breaking ansatz has been employed in [FLMRT02] to obtain the solution and complexity of
the suboptimal ferromagnetic state and to identify the exact dynamical transition point pd .
The calculation, that considered both BSC and BEC, but focuses on the latter, leads to the
same result as that obtained by the RS calculation.

To study the dynamical transition, Franz et al [FLMRT02] calculated the number of
meta-stable states with a given energy density ε, for the BEC, using established methods from
the physics of disordered systems [Mon95, FP95]. The number of meta-stable states can be
described as

NMS(ε) ∼ eN�(ε) (33)
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Figure 5. The complexity �(ε) for (from top to bottom) p = 0.45 (below pc), p = 0.5 and
p = 0.55 (above pc); calculated for the case of a BEC and a (6, 3) regular code (copied under
permission from S Franz, M Leone, A Montanari and F Ricci-Tersenghi 2002. The dynamic phase
transition for decoding algorithms Phys. Rev. E 66 046120 [FLMRT02]. Copyright (2002) by the
American Physical Society.).

where �(ε) defines the complexity. Figure 5 shows a plot of the resulting complexity curves
for three different values of the erasure probability p in the case of a BEC and a (6, 3) regular
code (an ‘almost factorized’ variational ansatz has been used for calculating the 1-step RSB
free energy). The picture that emerges is as follows:

• In the low noise region (p < pd), no meta-stable states exist and local search algorithms
are able to recover the erased bits.

• In the intermediate noise region (pd < p < pc), an exponentially large number of meta-
stable states appear with energy densities ε in the range εs < ε < εd , defining the static
and dynamic energies, with εs > 0. The best estimated codeword, given the corrupted
one, is the original transmitted codeword; however, local algorithms fail to find the best
estimate due to a large number of meta-stable solutions.

• Above pc we have εs = 0 and a fraction of the meta-stable states consists of valid
codewords. Moreover, �(0) (which gives the number of such codewords) coincides with
the complexity of the paramagnetic entropy [FLMRT02].

4.2. MacKay–Neal codes

The analysis of MN codes is quite similar to that of Gallager’s codes, the only difference
being the consideration of both message and noise vectors in constructing the appropriate
Hamiltonian which, after gauging, takes the form

Hγ (σ, τ ; s,n) = −γ
∑
〈ir〉

D〈ir〉
(
σi1 · · · σik τr1 · · · τrl

− 1
)− Fs

k∑
i=1

siσi − Fn

N∑
r=1

nrτr (34)

where 〈ir〉 is shorthand for 〈i1 · · · ikr1 · · · rl〉; Fs and Fn correspond to the respective Nishimori
conditions (Fs = 0 in the case of unbiased messages).
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A similar analysis to that of Gallager codes results in the following expression for the free
energy

F = − 1

β
Extr{π̂ ,π,φ̂,φ}

{
α ln 2 + j

∫
dx π(x) dx̂ π̂ (x̂) ln(1 + xx̂)

+ αl

∫
dy φ(y) dŷ φ̂(ŷ) ln(1 + yŷ)

−α

∫ [ k∏
i=1

dxi π(xi)

][
l∏

r=1

dyr φ(yr)

]
ln

(
1 +

k∏
i=1

xi

l∏
r=1

yr

)

−
∫ [ j∏

i=1

dx̂i π̂ (x̂i)

]〈
ln

[∑
λ=±1

eλsβFs

j∏
i=1

(1 + λx̂i)

]〉
s

−α

∫ [ l∏
r=1

dŷr φ̂(ŷr )

]〈
ln

[∑
λ=±1

eλnβFn

l∏
r=1

(1 + λŷr)

]〉
n

}

where α = N/K = j/k, and π̂ , π, φ̂, φ correspond to RS order parameters obtained for both
signal and noise vectors, respectively, in the same manner as in section 4.1.2. Full details of
the calculation can be found in [VSK02, MKSV00].

The theoretical framework employed for both codes is very similar; however, the solutions
obtained analytically and numerically show some interesting differences. In the case of biased
messages (Fs �= 0), the results obtained are qualitatively similar to those obtained for Gallager
codes, but a different picture emerges when the messages are unbiased, summarized in figure 6
for the cases k = 1, 2 and k � 3.

Arguably the most intriguing solution is for the case of k � 3, suggesting that all regular
MN codes with k � 3 are theoretically capable of saturating Shannon’s limit [KMS00b,
MKSV00]. This result has been received with great surprise by the information theory
community as it is believed that saturating Shannon’s limit is only possible by LDPC codes
of infinite connectivity [Mac99, SU03]. One intuitive argument that we can offer [vMSK02]
is to do with the randomness of the syndrome vector: any finite connectivity Gallager code
takes modulo 2 sums of elements sampled from a biased noise vector and therefore produces
a slightly biased syndrome vector; it will only become unbiased once the number of elements
sampled diverges. In MN codes, on the other hand, each syndrome bit is obtained from a
combination of biased (noise) and unbiased (message) bits, and is therefore truly unbiased
even when the number of sampled bits is small.

4.3. Other channels

Extending the analysis above to other channel types is straightforward. The AWGN has been
studied in a very similar context in [Ruj93, KS99a, NW99, Mon01, TS03c]. Each real-valued
codeword bit can be interpreted as an effective flip rate, leading to a similar Hamiltonian

H =
N−K∑
µ=1

χ(zµ = [Hτ ]µ) −
N∑

i=1

log p(τiyi) (35)

where the last term represents the received real-valued vector y and the effective flip noise
vector τ . It is the log-likelihood ratio h(yj ) ≡ 1

2 log(p(yj )/p(−yj )) of the channel noise yj

that serves as the external field acting on site j ; the channel characteristics define the field
distribution. Analysing the effect of having different communication channels on the code
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Figure 6. Figures on the left-hand side show schematic representations of free energy landscapes
while figures on the right show overlaps ρ as a function of the noise level p; thick and thin
lines denote stable solutions of lower and higher free energies, respectively and dashed lines
correspond to unstable solutions. (a) k � 3 or l � 3, k > 1: the solid line in the horizontal axis
represents the phase where the ferromagnetic solution (F, ρ = 1) is thermodynamically dominant.
The paramagnetic solution (P, ρ = 0) becomes dominant at pc , that coincides with the channel
capacity. (b) k = 2 and l = 2: the ferromagnetic solution and its mirror image are the only minima
of the free energy up to pd (solid line). Above pd suboptimal ferromagnetic solutions (F′, ρ < 1)
emerge. The thermodynamic transition occurring at p3 is below the maximum noise level given
by the channel capacity, which implies that these codes do not saturate Shannon’s bound even if
optimally decoded. (c) k = 1: the solid line in the horizontal axis represents the range of noise
levels where the ferromagnetic state (F) is the only minimum of the free energy. The suboptimal
ferromagnetic state (F′) appears in the region represented by the dashed line. The dynamical
transition is denoted by pd , where F′ first appears. For higher noise levels, the system becomes
bistable and an additional unstable solution of the saddle point equations necessarily appears. The
thermodynamical transition occurs at the noise level p1 (smaller than Shannon’s limit) where F′
becomes dominant.

properties, therefore reduces to investigating the effect of different field distributions on the
physical properties of the system. For instance, for the AWGN, this reduces to (for a detailed
description see [TS03c])

pAWGN(h) =
√

σ 2

2π
exp(−(h − σ−2)2/2σ−2). (36)

The calculation then follows in a similar way to those described previously and produces
qualitatively the same results for all channels studied [TS03c]; the exact numerical details
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Figure 7. First step in the construction of a Husimi cactus with k = 3 and connectivity j = 4.

change from channel to channel. Several different channels for both Gallager and MN codes,
in a broad parameter range, have been examined in [TS03c]; among the channels studied: the
binary-input additive-white-Gaussian-noise channel (BIAWGNC), the binary-input Laplace
channel (BILC) and the general binary-input output-symmetric (BIOS) memoryless channel.

4.4. The Bethe approximation

An alternative method for carrying out the analysis is by employing the Bethe approximation
[WS87b] (also termed Thouless–Anderson–Palmer (TAP) approach for diluted systems [KS98,
VSK99, VSK02] and Husimi cactus [VSK00a]) that is exactly solvable [Guj95, BL82, RK92,
Gol91]. It assumes a tree-like graph of connectivity j and a polygon of k vertices with one
Ising spin in each vertex. All spins in a polygon interact through a single coupling element Dµ,
where µ represents a shorthand notation for a selection of indices 〈i1 · · · ik〉; one of the spins
is called the base spin (generation 0), as shown in figure 7. In a generic step, the base spins of
the (j − 1)(k − 1) polygons in generation t − 1 are attached to k − 1 vertices of a polygon in
the next generation t. This process is iterated until a maximum generation tmax is reached, the
graph is then completed by attaching j uncorrelated branches of tmax generations at their base
spins. In this way each spin inside the graph is connected to j polygons exactly. The local
magnetization at the centre mi can be obtained by fixing boundary (initial) conditions in the
0th generation and iterating the related recursion equations until generation tmax is reached.
Carrying out the calculation in the thermodynamic limit corresponds to having tmax ∼ ln N

generations and N → ∞.
We adopt here the approach presented in [RK92] for obtaining recursion relations. The

probability distribution Pµi(τi) for the base spin of the polygon µ is connected to (j −1)(k−1)

distributions Pνl(τl), with ν ∈ G(l)\µ (the set of all polygons linked to l but not µ) of polygons
in the previous generation:

Pµi(τi) = 1

N
Tr{τl} exp


βγ


Jµτi

∏
l∈L(µ)\i

τl − 1


 + βFτi


 ∏

ν∈G(l)\µ

∏
l∈L(µ)\i

Pνl(τl) (37)

where L(µ) denotes the polygon µ of the lattice and the trace is over the spins τl such that
l ∈ L(µ)\i; Jµ represents the corresponding syndrome vector.

Calculating the effective field x̂νl on a base spin l due to neighbours in polygon ν, taking
γ → ∞ and β = 1, one obtains the effective local magnetization due to interactions with the
nearest neighbours in one branch m̂µl = tanh(x̂µl), where

x̂µi = atanh


Jµ

∏
l∈L(µ)\i

tanh


F +

∑
ν∈G(l)\µ

x̂νl




 . (38)

The effective local field on a base spin l of a polygon µ due to j − 1 branches in the previous
generation and due to the external field is

xµl = F +
∑

ν∈G(l)\µ
x̂νl . (39)
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The set of equations (38), (39) can be rewritten in terms of m̂µl and mµl [Mac99, KS98, KF98]

mµi = tanh


F +

∑
ν∈G(l)\µ

atanh (m̂νi)


 m̂µi = Jµ

∏
l∈L(µ)\i

mµl (40)

giving rise to a closed set of iterative equations (identical to those of BP) that can also be used
for decoding. Iterating the coupled set of equations (40) one converges to a stable minimum
and can compute the following approximated free energy:

F({mµi, m̂µi}) =
N−K∑
µ=1

∑
r∈L(µ)

ln(1 + mµrm̂µr) −
N−K∑
µ=1

ln


1 + Jµ

∏
r∈L(µ)

mµr




−
N∑

l=1

ln


eF

∏
µ∈G(l)

(1 + m̂µl) + e−F
∏

µ∈G(l)

(1 − m̂µl)


 . (41)

Equations (40) represent the interdependence of microscopic quantities; a macroscopic
description can be constructed by retaining only statistical information about the system,
namely by describing the evolution of histograms of variables xµi and x̂µi .

Assuming that the effective fields xµi and x̂µi are random variables independently
sampled from the distributions P(x) and P̂ (x̂), respectively, and that ni is sampled from
P(n) = (1 − p)δ(n − 1) + pδ(n + 1), one can then establish the following recursion relation
in the space of probability distributions [BL82]:

Pt(x) =
∫

dnP (n)

∫ j−1∏
l=1

dx̂l P̂ t−1(x̂l)δ

[
x − Fn −

j−1∑
l=1

x̂l

]

P̂ t−1(x̂) =
∫ k−1∏

l=1

dxlPt−1(xl)δ

[
x̂ − atanh

(
k−1∏
l=1

tanh(xl)

)] (42)

where Pt(x) is the distribution of effective fields in the tth generation due to the previous
generations and external fields; in the thermodynamic limit the distribution far from the
boundary is P∞(x) (generation t → ∞). The local field distribution at the central site is
computed by replacing j − 1 by j in the first equation of (42):

P(h) =
∫

dnP (n)

∫ C∏
l=1

dx̂l P̂ ∞(x̂l)δ

[
x − Fn −

C∑
l=1

x̂l

]
. (43)

It is easy to see that P∞(x) and P̂ ∞(x̂) satisfy equations (30) obtained by the replica symmetric
assumption [KMS00b, MKSV00, VSK00b] if the variables describing fields are transformed
to those of local magnetizations through x 	→ tanh(βx). It is therefore not surprising that
one obtains identical results to those obtained using the RS analysis and using BP decoding.
In fact, the DE method used extensively in the IT community for analysing LDPC codes is
similar to the macroscopic iterative equations (42).

4.5. Weight and magnetization enumerators

A different approach to analysing properties of LDPC codes relies on a microscopic calculation
where solution vectors are forced to lie on a shell defined by the overlap with the true solution
(weight enumerator) or by a certain magnetization value (magnetization enumerator); both can
be used to define critical transition points of LDPC codes. We focus here on the magnetization
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Figure 8. The qualitative picture of M(m) �0 (solid curve lines) for different values of p. For
MAP, MPM and typical set decoding, only the relative values of m+(p) and m0(p) determine the
critical noise level. Dashed lines correspond to the energy contribution of −βF for Nishimori’s
condition (β = 1). The states with the lowest free energy are indicated by a point •. (a) Sub-critical
noise levels p <pc , where m+(p)<m0(p), there are no solutions with higher magnetization than
m0(p), and the correct solution has the lowest free energy (free energy difference corresponds
to the distance between the dashed line and the magnetization enumerator curve). (b) Critical
noise level p =pc , where m+(p)=m0(p). The minimal free energy of the sub-optimal solutions
coincides with that of the correct solution at Nishimori’s condition (all meet at m+(p) = m0(p)).
(c) Over-critical noise levels p > pc where many solutions have a higher magnetization than the
true typical one. The minimal free energy of suboptimal solutions is lower than that of the true
solution.

enumerator (M); calculations involving the weight enumerator will be mentioned in
section 5.2.

The corresponding Hamiltonian is similar to (20) except for the second term that defines
the magnetization shell (after gauging)

Hγ,m(τ ) = −γ
∑

〈i1···ik〉
D〈i1···ik〉(τi1 · · · τik − 1) − δ

(
N∑

l=1

nlτl − m

)
. (44)

Calculating the related entropy as a function of the magnetization m provides an intuitive and
transparent explanation of the relation between different decoding schemes such as typical set
decoding, MAP and finite temperature decoding (MPM) [vMSK01, vMSK02].

Carrying out the analysis along the same lines as before [Mon01, vMSK01, vMSK02],
one obtains expressions for the magnetization enumerator as a function of m, similar to those
sketched in figure 8; from these plots one can provide a simple explanation of the relation
between various (theoretical) decoding methods, and calculate the thermodynamic transition
point pc. The magnetization enumeratorM(m) (curved solid line) takes positive values only in
the interval [m−(p),m+(p)]; for even k,M(m) is an even function of m and m−(p)=−m+(p).
The maximum value of M(m) is always (1−R) ln(2) for Gallager codes, and R ln(2) for MN
codes. The true noise n has the typical magnetization of the noise vector; in the case of a BSC
m(n) = m0(p) = 1−2p (the typical set magnetization is denoted by a dashed–dotted line).
States with the lowest free energy are denoted by a point (•).
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Selection of the best estimates by the various decoding schemes can be summarized as
follows:

• Maximum likelihood (MAP) decoding. It selects the solution vector τ (obeying all parity
checks) with the highest magnetization. As the noise level increases, the gap between
m0(p) and m+(p)) closes; the critical noise level pc is determined by the condition
m+(pc)=m0(pc).

• Typical set decoding. It is based on randomly selecting a solution vector τ with the
expected magnetization m(τ ) = m0(p) [AJK01]; an error is declared when there is no
such vector or when there are several solution vectors with magnetization m(τ ) = m0(p).
The critical noise level pc is determined by the condition m+(pc)=m0(pc), and is identical
to the point obtained by a MAP decoder.

• Finite temperature (MPM) decoding. Selection is based on a free energy minimization
[KMS00b], where an energy term −Fm(τ ) is added to the parity check term (20). Using
the thermodynamic relation F = U − 1

β
S, β being the inverse temperature (Nishimori’s

condition corresponds to setting β =1), U the internal energy and S the entropy; the free
energy of suboptimal solutions is given by F(m) = −Fm− 1

β
M(m) (for M(m) � 0),

while that of the true solution is given by −Fm0(p).
The selection process is explained graphically in figure 8. The energy difference

between suboptimal solutions relative to that of the correct solution, is given by the
dashed line of slope −F through the point (m0(p), 0); to calculate the free energy of any
suboptimal solution one should also consider its entropy, represented by the magnetization
enumerator curve (the true solution is of zero entropy). Therefore, the distance between
M(m) and the dashed line represents the difference between the lowest free energy
among suboptimal solutions and that of the true solution. Solutions of magnetization m
for which M(m) lies above/below this line, have a lower/higher free energy, respectively.
The critical noise level pc is defined by the lowest p value for which there are suboptimal
solutions with a free energy equal to −Fm0(p) (i.e. a single contact point between the
dashed line and the magnetization enumerator curve). It coincides with the point obtained
by MAP [MN00] and typical set decoding [vMSK02].

The critical noise level is defined by following the dependence of m+ on the noise level and
finding the point m+(pc)=m0(pc) as described in figure 9; results obtained for the critical noise
level in the case of Gallager codes of various parameters are also shown (for both quenched
and annealed calculations of the free energy related to (44), denoted by a subscript a/q). The
annealed approximation gives a much more pessimistic estimate for pc as it overestimates
M by giving high weight to exponentially rare events. Results obtained by the quenched
calculations are similar to those reported in [KSNS01] using another method as explained
in section 5.2, but are more optimistic than those reported in the IT literature which rely on
bounding techniques.

The analysis has also been carried out for MN codes [vMSK01, vMSK02] and in a range
of channel types [SvMS03]. Interestingly, the location of m+ remains fixed for MN codes
with k � 3 and for k = 2, l � 3, leading to a thermodynamical transition point that saturates
Shannon’s limit in agreement with our previous results [KMS00b, MKSV00].

5. Optimal performance : statistical mechanics versus IT

DE offers a useful framework for evaluating error correction performance achieved by a
practical decoding algorithm on the basis of the BP/TAP approach. However, this does not
necessarily mean the best performance among all possible decoding schemes. To clarify
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(a)
1
m

0 ppc,a pc,q
m0(p)

m+,a(p)
m+,q(p)

0.5

(b) (k, j) (6, 3) (5, 3) (6, 4) (4, 3)

Code rate 1/2 2/5 1/3 1/4

IT 0.0915 0.129 0.170 0.205

pc,a (Ma) 0.031 0.066 0.162 0.195

pc,q (Mq) 0.0998 0.1365 0.1725 0.2095

Shannon psh 0.109 0.145 0.174 0.214

Figure 9. (a) Determining the critical noise levels pc,a/q (quenched and annealed calculations)
based on the function Ma/q for Gallager codes. (b) Comparison of different critical noise level
(pc) estimates for Gallager codes. Typical set decoding estimates have been obtained via the
methods of IT [AJK01], based on the weight enumerator. Shannon’s limit denotes the highest
theoretically achievable critical noise level psh for any code [Sha48].

the potential of a code ensemble, it is important to assess the theoretical error correction
ability, disregarding computational cost. Several methods have been developed for this
purpose in the IT literature. In this section, we introduce two representative schemes,
termed Gallager’s methodology and typical set analysis, and relate them to methods known in
statistical mechanics (SM). For simplicity, we hereafter focus on (j, k) regular Gallager-type
LDPC codes and a BSC of flip probability p; extension to other types of codes such as MN
codes and other channels is straightforward.

5.1. Gallager’s methodology: error probability for finite code lengths

Shannon’s seminal papers indicated that the best code can provide error free communication if
code rate R is below Shannon’s limit when the code length becomes infinite. However, as any
code in use has a finite code length N, it is practically important and theoretically interesting
to assess the probability of error correction failure as a function of the code length.

Gallager’s variational method is a systematic scheme for upper bounding the error
probability of the best code in a given code ensemble C by averaging it over the ensemble.
In the IT literature, it is usually assumed that decoding is performed directly on codewords
and, therefore, Gallager’s method is conventionally introduced in a manner suitable for this
decoding approach. However, this formulation is not convenient here because the decoding
problem is provided first with respect to noise vectors in Gallager-type codes. We therefore
introduce a slightly different representation of Gallager’s method, which is applicable to a
range of decoding schemes.

5.1.1. Gallager’s inequality for the MAP estimator. Suppose that binary vectors x and y,
which consist of K-bit and N-bit components, respectively, are statistically related via a certain
joint distribution P(x, y). Let us consider an estimation problem of x given y. Following the
Bayesian framework, it can be shown that the block error probability, which is the probability
that the estimation result x̂ given y is not identical to the vector x, is minimized by the
maximum a posteriori probability (MAP) estimator

x̂MAP = argmax
x

{P(x|y)} = argmax
x

{
P(x, y)∑
x′ P(x′, y)

}
= argmax

x
{P(x, y)}.

(45)

In order to evaluate the block error probability of this estimator, we introduce an indicator
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function �MAP(x, y) which returns 1 if x̂MAP �= x and 0, otherwise. Then, the block error
probability is computed as

PB =
∑
x,y

P(x, y)�MAP(x, y). (46)

Gallager’s methodology relies on upper bounding this probability by utilizing the
following inequality for the indicator function

�MAP(x, y) �


∑

x′ �=x

(
P(x′, y)

P (x, y)

)λ




ρ

(47)

which holds for arbitrary λ � 0 and ρ � 0. This inequality is proved as follows: if
x̂MAP = x,�MAP(x, y) = 0. However, the right-hand side is always non-negative, which
means that equation (47) holds. On the other hand, if x̂MAP �= x,�MAP(x, y) = 1. However,
this implies that there exists at least one vector x′′ �= x such that P(x′′, y) � P(x, y). This can
be generalized as �MAP(x, y) = 1 � (P (x′′, y)/P (x, y))λ �

∑
x′ �=x(P (x′, y)/P (x, y))λ

for ∀ρ � 0; equation (47) immediately follows because the ratio P(x′, y)/P (x, y) is always
non-negative and ∀ρ � 0, xρ � 1 holds for ∀x � 1.

Inserting equation (47) into equation (46) we obtain Gallager’s inequality

PB �
∑
x,y

P(x, y)


∑

x′ �=x

(
P(x′, y)

P (x, y)

)λ




ρ

=
∑
x,y

P 1−λρ(x, y)


∑

x′ �=x

P λ(x′, y)




ρ

(48)

which provides the tightest inequality by choosing λ = 1/(1 + ρ) when ρ is fixed. As this
inequality holds for ∀ρ � 0 and ∀λ � 0, the bound can be optimized by minimization of the
right-hand side with respect to ρ � 0 keeping λ = 1/(1 + ρ).

5.1.2. Application for decoding Gallager-type codes. Equation (48) can be employed for
evaluating the block error probability of the decoding problem of Gallager-type codes. For
this, we introduce the joint probability of noise vector n and syndrome vector z given a parity
check matrix H; employing the Ising spin representation

P(n, z|H) =
N−K∏
µ=1

δ


zµ,

∏
i∈L(µ)

ni


× exp

(
F
∑N

i=1 ni

)
(2 cosh(F ))N

(49)

where δ(x, y) = 1 for x = y and 0 otherwise, L(µ) denotes the set of indices 〈i1 · · · ik〉 for
non-zero elements in the µth row of H and F = 1

2 ln[(1 − p)/p]. The first term enforces the
parity checks (12) (representing the likelihood term P(z|n,H)), while the second represents
the appropriate prior term; this is because the noise vector n is generated in the BSC with the
prior probability P(n) = exp

(
F
∑N

i=1 ni

)/
(2 cosh(F ))N .

Using equation (48) in equation (49) leads to an upper bound of the block error probability
of the MAP decoding for a given parity check matrix H as

PB(H) �
∑
n,z

P 1−λρ(n, z|H)


∑

n′ �=n

P λ(n′, z|H)




ρ
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Figure 10. A configuration in a parity check matrix H of j = 3 that deteriorates the decoding
performance (a), represented as a short cycle of a particular type in the graphical expression (b).
When two variables indexed by i1 and i2 share all of the same j = 3 checks which are denoted
as µ1, µ2 and µ3, simultaneous flips of these two do not break the parity check condition. This
makes it difficult to identify correctly the true noise vector n. When H is generated uniformly
under the (j, k)-constraints, this kind of configuration occurs with a probability of O(N−1) in the
case of j = 3, which yields a polynomially slow decay in equation (51).

=
∑
n

exp
(
(1 − λρ)F

∑N
i=1 ni

)
(2 cosh(F ))N

×

∑

n′ �=n

N−K∏
µ=1

δ


1,

∏
i∈L(µ)

nin
′
i


× exp

(
λF

N∑
i=1

n′
i

)
ρ

(50)

where summation over z has already been carried out, resulting in a contribution∏N−K
µ=1 δ

(∏
i∈L(µ) ni,

∏
i∈L(µ) n′

i

) = ∏N−K
µ=1 δ

(
1,
∏

i∈L(µ) nin
′
i

)
. For a given code ensemble,

the minimum of the block error probability P ∗
B is always upperbounded by the average error

probability 〈PB(H)〉H , where 〈(· · ·)〉H denotes average over the ensemble of codes (or parity
check matrices H) under appropriate constraints. Therefore, we here obtain an upper bound
for the block error probability of the best code in the (j, k)-Gallager code ensemble by

P ∗
B �

∑
n

exp
(
(1 − λρ)F

∑N
i=1 ni

)
(2 cosh(F ))N

×
〈( ∑

n′ �=n

N−K∏
µ=1

δ

(
1,
∏

i∈L(µ)

nin
′
i

)
× exp

(
λF

N∑
i=1

n′
i

))ρ〉
H

(51)

which can be optimized by minimizing the right-hand side with respect to ρ � 0, keeping
λ = 1/(1 + ρ).

5.1.3. Rigorous bound. It has been shown, using the methods of IT, that the right-hand side
of equation (51) can be decomposed into two parts as

O(N−γ ) + O(exp[−NE]) (52)

for naively (and completely randomly) constructed (j, k)-Gallager code ensembles, where γ

is a certain power determined by parameters j, k and N is assumed large [Gal63, MB01]. This
implies that the bound vanishes to 0 as N → ∞ if the exponent E, which depends on the
adjustable parameters ρ, λ � 0, can be maximized to a positive value. The rate of convergence
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is quite slow due to a polynomially small fraction of poor codes in the ensemble, which have
short cycles of particular kinds in the parity check matrices (figure 10) [vMK03]. Therefore,
the behaviour of the average bound (51), (52) can be improved by expurgating such codes from
the ensemble. In [MB01], it is shown that the expurgated ensemble exhibits an exponential
behaviour, characterized by the second term of equation (52).

For expurgated ensembles, one can evaluate a rigorous lower bound of the exponent E as a
function of ρ and λ, with an extra constraint, by employing Jensen’s inequality 〈Xρ〉 � 〈X〉ρ ,
which is valid for a non-negative random number X and 0 � ρ � 1. This yields

Ea(ρ, λ;R,p) = Extr
|x|<1,|x̂|<1


ρ


− j

k
ln

(
1 + xk

2

)
+ j ln

(
1 + x̂x

2

)

− ln

[(∑
n′=±1

eλFnn′
(

1 + x̂n′

2

)j
)]

λρ




− ln 2 cosh(1 − λρ)F + ln 2 cosh F


 (53)

where [· · ·]λρ =∑n=±1(· · ·) e(1−λρ)Fn/(2 cosh(1−λρ)F ) and Extr(· · ·) denotes extremization
over the variables |x| < 1 and |x̂| < 1. This procedure is analogous to the annealed
approximation of SM, similar to the approach taken in [SST92].

For j, k → ∞, while keeping R = 1 − j/k = K/N finite, the maximization of
equation (53) with respect to 0 � ρ � 1 keeping λ = 1/(1 +ρ) reproduces the random coding
exponent

ERC(R, p) =




(1 − R) ln 2 − ln(
√

p +
√

1 − p)2, 0 � p � pb

pc ln pc

p
+ (1 − pc) ln 1−pc

1−p
, pb < p � pc

0, pc < p

(54)

which is known in IT literature [Gal68], where the BSC flip rate p = (1 − tanh(F ))/2, pc is a
critical noise rate that satisfies Shannon’s limit R = 1−H2(pc) and pb = p2

c

/(
p2

c +(1−pc)
2
)
,

is often termed Bhattachalya’s limit. For relatively high rates R, it is known that this exponent
represents the exact decay rate of the best possible codes, which implies that there is no room
for improving the bound (54) in the case of j, k → ∞ (but obviously not for finite j, k values,
where no exact expression exists in the IT literature).

5.1.4. Improving the bound by the replica method. However, the exact result for infinite j, k

does not necessarily mean that the exponent of (54) provides the tightest bound for finite j, k

as well. Actually, direct evaluation of equation (51) using the replica method yields another
exponent [KSNS01]

Eq(ρ, λ;R,p) = Extr∗
π(·),π̂(·)


−j

k
ln

〈(
1 +
∏k

i=1 xi

2

)ρ〉
π

+ j ln

〈(
1 + x̂x

2

)ρ〉
π,π̂

− ln

〈[( ∑
n′=±1

eλFnn′
j∏

µ=1

(
1 + x̂µn′

2

))ρ]
λρ

〉
π̂

− ln 2 cosh(1 − λρ)F + ln 2 cosh F


 (55)
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Eq(ρ;R, p)

ρ
p = pc

low p
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Figure 11. Schematic profiles of Eq(ρ; R, p).

under the RS ansatz, where 〈· · ·〉π denotes an average with respect to dummy variables
xi ∈ [−1, 1] (i = 1, 2, . . . , k) over an identical variational distribution π(x), and similarly for
x̂µ ∈ [−1, 1] (µ = 1, 2, . . . , j) and 〈· · ·〉π̂ . The functional extremization Extr∗π(·),π̂(·){· · ·}
excludes the ferromagnetic solution of πF(x) = δ(x − 1) and π̂F(x̂) = δ(x̂ − 1).

For finite j, k, Eq(ρ, λ;R,p) is maximized by λ = 1/(1 + ρ) for any given ρ � 0,
whereas Ea(ρ, λ;R,p) is not. For the partially maximized exponent Eq(ρ;R,p) ≡
Eq(ρ, 1/(1 + ρ);R,p), the following properties generally hold (figure 11):

lim
ρ→0

Eq(ρ;R,p) = 0 (56)

∂2

∂ρ2
Eq(ρ;R,p) < 0. (57)

This implies that for a given R, the noise threshold pc below which maxρ�0{Eq(ρ;R,p)}
becomes positive, indicating that the average error bound vanishes for N → ∞, is determined
by a condition

lim
ρ→0

∂

∂ρ
Eq(ρ;R,pc) = 0. (58)

Inserted into equation (55), this reduces to the phase boundary condition

FNF − FF = 0 (59)

where FF = −F tanh(F ) and FNF are the free energies of the ferromagnetic and non-
ferromagnetic solutions, respectively, calculated from the quenched variational free energy
(29) for β = 1; the latter validates the RS ansatz, used here, as no replica symmetry breaking
effect is expected for the Nishimori condition [NS01]. This also implies that the noise threshold
of MAP decoding, which corresponds to the zero temperature state in statistical mechanics, is
identical to that of the MPM decoding, the performance of which is optimized at Nishimori’s
temperature, in agreement with results obtained in the IT literature [MN00].

As the exponent Eq(ρ, λ;R,p) is directly evaluated from equation (51) without
employing additional inequalities, the optimized bound obtained should be tighter and provide
more optimistic lower bounds for noise threshold pc than that from Ea(ρ, λ;R,p). Clearly
one of the main drawbacks of the replica method is the lack of mathematical rigour; recent
research [Gue03, Tal03] proved the exactness of results obtained using the replica methods
in extensively connected systems. One can hope that similar proofs for diluted systems will
follow, making these results much stronger. In any case the difference between the two
exponents becomes smaller as j, k → ∞ given a code rate R (table 1).

5.1.5. Reliability exponent. The exponent that represents the fastest decay rate of decoding
error probability achievable by the best codes in the ensemble is termed the reliability exponent
(RE) [Gal68]. The random coding exponent (54) coincides with the RE for relatively high



R26 Topical Review

Table 1. Comparison between different evaluation schemes of the noise threshold pc for MAP
decoding. ANNEAL1 indicates the lower bound of pc obtained by maximizing Ea(ρ, λ; R, p)

with respect to ρ keeping λ = 1/(1 + ρ). Lower bounds for ANNNEAL2 are evaluated by
maximizing the same exponent with respect to ρ � 0 and λ � 0 without imposing additional
conditions; it provides a tighter bound since the optimization with respect to λ, for a fixed ρ,
is not commutable with the average over a code ensemble. QUENCH denotes the estimates of
pc obtained from Eq(ρ, λ; R,p), evaluated directly from equation (48) using the replica method
without employing any extra inequalities; it therefore provides the most optimistic estimate.
SHANNON offers critical noise rates psh at Shannon’s limit for given code rates R. The difference
in the estimates between the three evaluation schemes becomes smaller as j and k increase, keeping
the code rate finite for j � 3. On the other hand, ANNEAL2 and QUENCH generally provide the
same estimates for j = 2 since pc for this particular parameter choice is determined by the local
instability of the ferromagnetic solution for which the two methods coincidently provide an identical
condition, whereas a discontinuous phase transition between the ferro- and paramagnetic solutions
determines pc for j � 3.

R (j, k) ANNEAL1 ANNEAL2 QUENCH SHANNON

1/2 (3, 6) 0.0678 0.0915 0.0998 0.109
2/5 (3, 5) 0.115 0.129 0.136 0.145
1/3 (4, 6) 0.1705 0.1709 0.173 0.174
1/3 (2, 3) 0 0.0670 0.0670 0.174
1/2 (2, 4) 0 0.0286 0.0286 0.109

code rates R. However, for a low code rate region, there still exists a narrow gap between
the current tightest lower and upper bounds of the RE, and the exact expression is yet to be
determined [MB01, KSNS01, Bar03].

Exact evaluation of RE by improving lower or upper bounds of the error probability,
the preferred approach in the IT community, may be difficult since using inequalities has the
potential to provide loose bounds. In fact, starting from inequality (47), one cannot improve
the bound further, since inequality (47) itself does not provide a tight bound for the low R
region [Gal68, KSNS01]. Instead, evaluation based on an equality with respect to the error
indicator

�MAP(n|H) = lim
β±→+∞,λ±→±1

Zλ+
+ (β+|n,H)Z

λ−
− (β−|n,H) (60)

might provide the exact expression of RE, where n and H are the true noise and parity check
matrix, respectively, and

Z+(β|n,H) ≡
∑
n′ �=n

N−K∏
µ=1

δ


1,

∏
i∈L(µ)

nin
′
i


× exp

(
λβF

N∑
i=1

n′
i

)

Z−(β|n,H) ≡
∑
n′

N−K∏
µ=1

δ


1,

∏
i∈L(µ)

nin
′
i


× exp

(
λβF

N∑
i=1

n′
i

) (61)

are the two partition sums.
Equation (60) provides an expression for the block error probability

PB(H) = lim
β±→+∞,λ±→±1

∑
n

P(n)Zλ+
+ (β+|n,H)Z

λ−
− (β−|n,H) (62)

for a given parity check matrix H. Note that the ability to separate suboptimal solutions from
the ferromagnetic solution relies on the gap in the magnetization enumerator that exists for
all p < pc (see figure 8). Furthermore, employing an equality P ∗

B = minH {PB(H)} =
limr→−∞(〈P r

B(H)〉H )1/r , a direct expression of RE for a given code ensemble is obtained as
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ERE(R, p) = − 1

N
ln P ∗

B = − lim
r→−∞,β±→+∞,λ±→±1

{
1

rN

× ln

〈[∑
n

P(n)Zλ+
+ (β+|n,H)Z

λ−
− (β−|n,H)

]r〉
H

}
(63)

which can be evaluated by the replica method, considering λ± and r as replica powers.
A recent study in this direction revealed that an expression

ERE(R, p) =
{

max0<r�1
{

(1−R) ln 2
r

− 1
r

ln(1 + 2rpr/2(1 − p)r/2)
}

0 � p � pa

ERC(R, p) pa < p � 1
(64)

is derived for LDPC code ensembles in the limit j, k → ∞, where ERC(R, p) is the random
coding (RC) exponent (54) and pa a critical noise rate for which (1−R) ln 2

r
− 1

r
ln(1 + 2rpr/2

(1−p)r/2) is maximized at r = 1 [SvMSK03]. It is worthwhile mentioning that this is identical
to the existing lower bound of the RE evaluated for the ensemble of all possible codes (in
expurgated ensembles) [Gal68]. It is well known that LDPC code ensembles for j, k → ∞
have very similar properties to those of the ensemble of all possible codes [MB01, Mac99];
therefore, this result suggests that the existing tightest lower bound of the RE represents the
exact expression of the fastest error exponent achievable by the best possible codes, as is
widely believed, while a rigorous proof is still sought after [Bar03].

5.2. Typical set analysis: simpler method for assessing critical noise levels

Although Gallager’s variational method is powerful enough to tightly bound the block error
probability of MAP decoding for a wide class of code ensembles, it generally requires rather
complicated computation even just for evaluating the noise threshold. In addition, it is quite
technical and provides few insights for intuitive understanding of the various types of decoding
errors.

Typical set (pairs) analysis is an alternative approach to lower bound the noise threshold for
a given code ensemble focusing on typical set (pairs) decoding, which is slightly weaker than
the MAP decoding scheme (e.g., in rare cases, the true noise may have a higher magnetization
than that of the typical set; in such a case the two decoding schemes will differ). Error
evaluation in this scheme is relatively easy to understand because occurrences of decoding
failure are directly studied using the law of large numbers and the weight enumerator; the
latter is a standard quantity in the IT literature characterizing the distribution of distances
between codewords. This method was pioneered by Shannon for the ensemble of all codes
more than 50 years ago [Sha49]; but was not applied to other ensembles until recently. Only
since MacKay successfully employed it for analysis of certain LDPC code ensembles, it is
now becoming more popular in the IT community [Mac99, AJK01].

5.2.1. Typical sequences and classification of errors. In order to introduce the typical set
decoding approach, let us first provide the definition of a noise vector being typical. Due to
the law of large numbers, a noise vector n′ generated by a BSC satisfies a condition∣∣∣∣∣ 1

N

N∑
i=1

n′
i − p

∣∣∣∣∣ � εN (65)

with a high probability for large N and a positive number εN ∼ O(N−γ )(0 < γ < 1/2),
where 0 < p = (1 − tanh F)/2 < 1/2 is the flip rate characterizing the BSC. We define as
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typical any noise vector n′ for which this condition holds. We also term the set of all typical
vectors the typical set.

In typical set decoding one selects a vector that belongs to the typical set and satisfies the
parity check equation (12), as a valid noise vector estimate (see also section 4.5). Two types
of decoding errors can occur in this decoding scheme: type I error occurs when the true noise
vector n is atypical. Type II error occurs when n is typical, and there are multiple typical
vectors that satisfy the parity check equation. By a straightforward extension of the law of
large numbers, it can be shown that the occurrence probability of type I errors, PI, vanishes
in the limit N → ∞ [AJK01]. Therefore, the noise threshold pc is determined only by the
condition that probability of type II errors PII vanishes. Since PII depends on each realization
of the parity check matrix H, we define pc for a given code ensemble C as the highest flip rate
below which the average type II error probability 〈PII(H)〉H vanishes in the limit N → ∞.

5.2.2. Lower bound of noise thresholds and weight enumerator. In order to evaluate
〈PII(H)〉H , it is convenient to introduce an indicator function �II(n|H) that returns 1, if
type II error occurs, and 0 otherwise, for a true noise vector n and parity check matrix H.
Then, the type II error probability for a given H is calculated as

PII(H) =
∑
n

P(n)�II(n|H) (66)

and 〈PII(H)〉H is obtained by averaging this over the code ensemble.
Unfortunately, it is difficult to directly express �II(n|H) in a rigorously treatable form.

However, one can easily produce an upper bound

�II(n|H) � VII(n|H) × δ

(
N∑

i=1

ni − N tanh F

)
(67)

in the Ising spin representation, where

VII(n|H) ≡
∑
n′ �=n

N−K∏
µ=1

δ


1,

∏
i∈L(µ)

nin
′
i


 δ

(
N∑

i=1

n′
i − N tanh F

)

=
∑
x�=1

N−K∏
µ=1

δ


1,

∏
i∈L(µ)

xi


 δ

(
N∑

i=1

nixi − N tanh F

)
. (68)

Since �II(n|H) = 1 when errors do occur, it is always upper bounded by the number of
solution vectors of the parity check equation (excluding the true noise n) that belong to the
typical set, VII(n|H). In the last expression (68), we rewrote the summation over the dummy
variable n′ using a new variable x = (xi) ≡ (n′

ini); the N-dimensional vector 1, with all
elements being 1, represents the true noise vector n in the new expression.

Inserting equations (67) and (68) into equation (66), and taking an average over the
expurgated (j, k)-Gallager code ensemble (i.e. with no atypically poor codes) in conjunction
with the identity 1 = ∫

dw δ
(∑N

i=1 xi − Nw
)
, an upper bound of the average type II error

probability is obtained as

〈PII(H)〉H �
∫

dw exp[N(−K(w, p) + R(w))] (69)
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Figure 12. The weight enumerator R(w) for (j, k) = (3, 6) and in the limit of j, k → ∞
keeping the code rate R = 1 − j/k = 1/2. For p = 0.0915, the function K(w, p) has a contact
with the weight enumerator of (j, k) = (3, 6) at w∗ � 0.735, which implies pc � 0.0915 holds
for the (3, 6)-Gallager code ensemble. K(w, p) is generally defined only for 1 − 4p < w � 1 and
becomes lower as p increases. Therefore, roughly speaking, the lower bound of pc becomes higher
as a code ensemble has a narrower weight enumerator. For a fixed code rate R, the code ensemble
of j, k → ∞ has the narrowest possible profile of R(w), which provides the exact estimate of the
noise threshold pc = psh where psh is Shannon’s limit that satisfies R = 1 − H2(psh).

where K(w, p) is derived independently of the code ensemble as exp[−NK(w, p)] ∼∑
n P(n)δ

(∑N
i=1 nixi − N tanh F

)
δ
(∑N

i=1 ni − N tanh F
)

imposing a constraint

(1/N)
∑N

i=1 xi = w; the weight enumerator

R(w) = 1

N
ln

〈[∑
x�=1

N−K∏
µ=1

δ

(
1,
∏

i∈L(µ)

xi

)
δ

(
N∑

i=1

xi − Nw

)]〉
H

(70)

characterizes the code ensemble. Equation (69) implies that 〈PII(H)〉H vanishes in the limit
N → ∞ as long as maxw{−K(w, p) + R(w)} < 0, which yields a lower bound for pc.

The meaning of the exponent in the right-hand side of equation (69) is intuitively
understandable by considering the mechanism that gives rise to a decoding failure. Firstly,
exp[−NK(w, p)] represents the probability that a ‘gauged noise vector’ n + x (mod 2) is
typical, as well as the true noise vector n, under the condition that the number of non-zero
elements of x,

∑N
i=1 xi , is constrained to N(1 − w)/2 (also termed weight in this Boolean

representation). In practice, a codeword vector t = GT s (mod 2), alternatively characterized
by the equation H t = H(GT s) = 0 (mod 2), plays the role of x; a type II error occurs if
both n and the gauged vector n + x (mod 2) become typical because there are at least two
typical noise vectors satisfying the parity check equation. However, this just provides an
error probability caused by a single codeword x. Therefore, secondly, we have to evaluate
the number of codewords that have a weight w, which is provided by the weight enumerator
R(w). Multiplying this number of codewords to exp[−NK(w, p)] and taking a summation
over the possible weight w, we finally obtain equation (69).

In the bound (69), all relevant properties of the code ensemble are represented by the
weight enumerator R(w). This function is maximized to R ln 2 at w = 0, in general, and
has a mirror symmetry R(−w) = R(w), in particular, for even k. Pictorially, the lower
bound of pc can be obtained through the value for which K(w, p) makes contact with R(w)

(somewhat similar to the magnetization enumerator of figure 8) at a certain point w∗, marked
by (•) in figure 12. This can be analytically performed in the case of j, k → ∞ as R(w) can
be expressed analytically, providing Shannon’s limit psh as a lower bound for pc. However,
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(a) decoding errorscodewords
(b) decoding errorscodewords

Figure 13. A possible shortcoming of typical set analysis. (a) If each decoding error in
noise estimation were associated with a single codeword, a simple product exp[−NK(w∗, p)] ×
exp[NR(w∗)] would have correctly evaluated 〈PII(H)〉H . (b) However, when a single decoding
error is associated with multiple codewords, the product overestimates 〈PII(H)〉H .

psh also serves as the upper bound of pc for any code ensembles, this means that pc = psh

indicating that the Gallager code saturates Shannon’s limit when j, k → ∞.
Thus, typical set analysis can exactly evaluate pc of the Gallager code ensembles in the

limit j, k → ∞. Unfortunately, this may not necessarily be the case for finite j, k. It can be
shown that the lower bounds of pc offered by the typical set analysis are the same as those
obtained by Gallager’s methodology for MAP decoding [AJK01], which in itself provides
more pessimistic evaluations than the replica method as shown in table 1. The gap between
SM and typical set analysis results may be attributed to the different decoding schemes used.
However, one can show that the replica method yields more optimistic lower bounds for pc

also when typical set decoding is used, which implies that evaluation of the noise threshold
utilizing typical set analysis is rigorous but not tight enough for finite j, k.

5.2.3. Improving the bound by the replica method. A possible shortcoming of typical set
analysis relates to the upper bounding of the average type II error probability by a product
of the error probability caused by a single codeword (exp[−NK(w, p)]) and the number of
codewords (exp[NR(w)]), focusing on the most relevant weight w = w∗. This bound would
have been tight if each codeword brought about estimation errors exclusively (i.e. each noise
vector estimation error is generated by a different codeword). However, since each noise vector
estimation error may be associated with multiple codewords belonging to the same codebook,
the simple product exp[−NK(w∗, p)] × exp[NR(w∗)] may overestimate the correct type II
error probability (figure 13). Therefore, it is necessary to take correlations between multiple
codewords associated with a single error into account in order to improve the evaluation
of pc.

An analysis based on an equality with respect to the error indicator

�II(n|H) = lim
ρ→+0

Vρ

II(n|H)

(
N∑

i=1

ni − N tanh F

)
(71)

might naturally introduce such correlations as

Vρ

II(n|H) =

∑

x�=1

N−K∏
µ=1

δ


1,

∏
i∈L(µ)

xi


 δ

(
N∑

i=1

nixi − N tanh F

)
ρ

creating certain interactions among ‘codeword vectors’ x. Substituting equation (71) into
equation (66) and taking an average over the code ensemble provides an equality

〈PII(H)〉H = lim
ρ→+0

exp[−NEII(ρ;R,p)] (72)
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where

EII(ρ;R,p) = − 1

N
ln

〈[∑
n

P(n)Vρ

II(n|H)δ

(
N∑

i=1

ni − N tanh F

)]〉
H

(73)

which can be evaluated by the replica method. Equation (72) indicates that pc can be assessed
from the limit where limρ→+0 EII(ρ;R,p) becomes positive.

A recent study showed that noise thresholds obtained by the SM typical set decoding
scheme are identical to those assessed by the replica approach to MAP decoding [KNvM02].
This indicates that differences of error correction abilities between the typical set and MAP
decoding schemes are relatively small and vanish in the limit of long message lengths.

6. Applications of LDPC codes

So far we have focused on LDPC as error-correcting codes. However, coding techniques
are required for various purposes in digital communication. In this section, we mention how
LDPC codes can be utilized for various purposes, other than simple error correction.

6.1. Lossless data compression

Data compression, or source coding, is a scheme to reduce the message size (data) by modifying
the information representation. This is usually carried out prior to transmission in order to
optimize communication efficiency by minimizing the data to be sent. The possibility of data
compression was first pointed by Shannon in his celebrated source coding theorem [Sha48].
He showed that for an information source represented by a distribution P(s) of N-dimensional
Boolean vectors s, one can employ another representation of K(� N) dimensions without
any distortion, if the code rate R = K/N satisfies R � H2(S) in the limit K,N → ∞, where
H2(S) ≡ −(1/N)

∑
s P(s) log2 P(s) denotes the binary entropy per bit of the source (S)

distribution P(s). On the other hand, it can also be shown that such reduction is impossible
when R < H2(S). Therefore, H2(S) represents the optimal compression rate, or compression
limit.

Unfortunately, the source coding theorem is non-constructive and suggests few clues for
designing good practical compression methods. However, after much effort, a practical code
that asymptotically saturates the optimal limit was finally discovered more than a decade
later [Jel68]. Therefore, the compression scheme based on LDPC codes presented below
may not compete with existing good practical codes such as the arithmetic codes [Jel68] and
Lempel–Ziv (LZ) compression [ZL77]. Nevertheless, this still serves as a useful prototype for
constructing a more advanced compression scheme used in network communication [SW73,
Mur02], described in the following section.

In order to compress an N-dimensional Boolean source vector s to a K(< N)-dimensional
codeword z on the basis of an LDPC scheme, let us introduce a K ×N sparse Boolean matrix
H with j and k non-zero elements per column and row, respectively. Using this matrix, one
can compress s to a shorter vector z by

z = Hs (mod 2). (74)

On the other hand, decoding z to retrieve the original representation s is performed with
knowledge of the source distribution P(s) utilizing the posterior distribution

P(σ|z) = P(σ)δ(z = Hσ)∑
σ P(σ)δ(z = Hσ)

(75)

which can be practically carried out employing the BP/TAP algorithm.
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Similarly to the case of error correction, the performance of this scheme can be evaluated
utilizing the replica method [Mur02]. In the Ising spin representation, the free energy per
element can be evaluated from

F = Extr
π(·),π̂(·)


− j

k

〈
ln

(
1 +
∏k

i=1 xi

2

)〉
π

+ j

〈
ln

(
1 + x̂x

2

)〉
π̂ ,π

− 1

N

〈
ln

[∑
σ

(
N∏

i=1

j∏
µ=1

(
1 + x̂µiτi

2

))
P(σ ⊗ s)

]〉
π̂ ,s


 (76)

under the RS ansatz, where σ⊗s = (σisi) (i = 1, 2, . . . , N) stands for source vectors gauged
by the true source vector s in the Ising spin expression and P(σ ⊗ s) represents the source
distribution in this expression. 〈· · ·〉s denotes an average over the source distribution.

For j � 3, the ferromagnetic solution πF(x) = δ(x − 1) and π̂F(x̂) = δ(x̂ − 1), which
represents decoding success, always extremizes the free energy (76) to

FF = − 1

N

∑
s

P(s) ln P(s) = H2(S) ln 2. (77)

In addition to this, another solution, which stands for decoding failure, appears when R is below
a certain critical rate Rd , which is determined by j and k. For finite j , this solution is obtained
only numerically. However, this solution can be analytically expressed as πNF(x) = δ(x) and
π̂NF(x̂) = δ(x̂) in the case of j, k → ∞ under the fixed code rate. Inserting this solution into
equation (76) provides the free energy

FNF = j

k
ln 2 = R ln 2. (78)

This, in conjunction with equation (77), means that the decoding success solution is
thermodynamically dominant and, therefore, the original expression s is potentially decodable
from the compressed vector z for R � H2(S) and an arbitrary source distribution P(s). This
implies that the current scheme achieves Shannon’s compression limit for j, k → ∞.

However, this does not imply that z can be decoded in practical time scales. The BP/TAP
algorithm is likely to be trapped in suboptimal solutions for R < Rd ; the compression limit
for practical decoding is therefore provided by Rd which is always higher than a critical rate
Rc, determined by the thermodynamic transition between the decoding success and failure
solutions. Roughly speaking, as j grows at a fixed rate R = j/k, Rc decreases, while Rd

increases. In particular, in the case of j → ∞, the potential and practical limits Rc and Rd

converge to H2(S) and 1, respectively, which means that the current scheme is impractical in
this limit although the theoretical performance can saturate Shannon’s limit.

On the other hand, other existing schemes such as the LZ codes are executable on
practical time scales and asymptotically achieve the compression limit even if details of the
source distribution are unknown [ZL77]. Therefore, the LDPC-based compression scheme
may not be competitive when used for the purpose of simple noiseless data compression.

6.2. Lossless compression of distributed sources

Although the practical significance of the LDPC-based scheme seems weaker than that of
existing state-of-the-art methods for simple lossless compression, it may not be the case for
more advanced problems. This is because optimal strategies sometimes cannot be employed
when conditions change. A data compression problem of distributed sources, first addressed
by Slepian and Wolf for data transmission in a network [SW73], offers one such example.
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Figure 14. (a) The Slepian–Wolf system. Encoding is carried out independently at distributed
sites, whereas decoding is simultaneously performed by a single user. (b) The achievable limit of
the Slepian–Wolf system.

Let us assume that two correlated source vectors s1 and s2 of N dimensions are generated
from a joint source distribution P(s1, s2). In a general scenario of the Slepian–Wolf problem,
s1 and s2 (from sources S1 and S2, respectively) are independently compressed to K1- and
K2-dimensional vectors z1 and z2, respectively. On the other hand, a single decoder
simultaneously retrieves the original expressions s1 and s2 from the codewords z1 and z2

utilizing the knowledge of P(s1, s2) at the decoding stage (figure 14(a)). For instance, this
kind of problem arises when two satellites covering overlapping regions transmit digital images
to a single base station on earth.

It is clear that a region specified by R1 = K1/N � H2(S1) and R2 = K2/N � H2(S2)

is achievable without any distortion by optimal compression codes for a single source,
dealing with s1 and s2 as vectors that independently follow marginal distributions P(s1) =∑

s2
P(s1, s2) and P(s2) =∑s1

P(s1, s2), respectively. However, Slepian and Wolf showed
that the achievable region can be further extended potentially as

R1 � H2(S1|S2) R2 � H2(S2|S1) R1 + R2 � H2(S1,S2) (79)

(figure 14(b)) if the knowledge of the joint distribution P(s1, s2) is fully utilized, where
H2(S1,S2) = −(1/N)

∑
s1,s2

P(s1, s2) log2 P(s1, s2), H2(S1|S2) = H2(S1,S2)−H2(S2) and
similarly for H2(S2|S1). Unfortunately, it is difficult to achieve this limit by the optimal codes
for a single source since incorporating the correlation between s1 and s2 with such schemes
is generally non-trivial.

On the other hand, the LDPC-based compression scheme is easily extended for the
distributed source by using the LDPC matrices H1 and H2, of dimensionalities K1 × N and
K2 × N , respectively, such that

z1 = H1s1 (mod 2) z2 = H2s2 (mod 2). (80)

In this scheme, one can directly incorporate the source distribution P(s1, s2) in the decoding
stage through the Bayes formula

P(σ1, σ2|z1, z2) = P(σ1, σ2)δ(z1 = H1σ1)δ(z2 = H2σ2)∑
σ1,σ2

P(σ1, σ2)δ(z1 = H1σ1)δ(z2 = H2σ2)
. (81)

Murayama showed that this scheme achieves the Slepian–Wolf limit (79) when the numbers of
non-zero elements per column/row in H1 and H2 become infinite [Mur02]. Furthermore, he
illustrated that utilizing LDPC matrices of finite non-zero elements per column/row, practical
decoding by BP/TAP becomes possible beyond the single source coding limit R1 � H2(S1)
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and R2 � H2(S2) for certain distributed sources; this implies that LDPC-based compression
schemes may be a promising direction for distributed data compression problems of this type.

6.3. Lossy data compression

The source coding theorem indicates that it is impossible to reduce the size of data below the
compression limit without allowing for any distortion. However, if a certain level of distortion
is allowed, one can further reduce the data size. Compression of this type is termed lossy
compression. JPEG and MPEG, which are examples of current standard schemes in use for
compressing data of images and movies, fall into this category.

In general, as the allowed distortion increases, the achievable data size decreases; namely,
there is a trade-off between the optimal compression rate and the distortion, which is provided
by the rate-distortion theorem presented by Shannon more than a decade after the source
coding theorem [Sha59].

Unlike lossless compression, no practical algorithm capable of saturating the optimal
performance predicted by the rate-distortion theory is known for lossy compression, even for
simple information sources. Therefore, the quest for better lossy compression codes remains
one of the important research areas in IT [YZB97].

Let us here focus on a simple lossy data compression problem of an unbiased Boolean
source of N-dimensional vector s, the distribution of which is assumed uniform P(s) = 1/2N .
The distortion function d(s, s̃) is used to evaluate the distortion, where s̃ is an N-dimensional
representative Boolean vector used to approximate s with a reduced information content.
Here, we employ the Hamming distance

d(s, s̃) =
N∑

i=1

(1 − δsi ,s̃i
) (82)

where δx,y = 1 if x = y and 0, otherwise.
In the current case, the lossless compression limit is given by the binary entropy per bit of

the source distribution R � H2(S) = −(1/N)
∑

s 2−N log2 2−N = 1, which implies that it is
impossible to reduce the size of the data any more without allowing some level of distortion.
However, when a distortion up to ND measured by the Hamming distance is allowed, it can
be shown analytically that one can compress s into a K = NR-dimensional Boolean vector z

if R � R(D), where

R(D) = 1 − H2(D) (83)

is termed the rate-distortion function of the current unbiased Boolean source [CT91]; such
analytical expressions of the rate-distortion functions are not known for most other sources.

In order to devise a lossy compression scheme, it is necessary to appropriately design a map
from the compressed expression z to the representative vector s̃. One possible construction
of this map is to employ an N × K LDPC matrix H such that

s̃ = s̃(z) = Hz (mod 2). (84)

Then, given an N-dimensional source vector s, encoding is carried out by selecting such a vector
z that satisfies the distortion constraint d(s, s̃(z)) � ND as the compressed representation of
s. On the other hand, one can easily decode z to approximate the original vector s employing
equation (84). It can be shown that this scheme saturates the rate-distortion function (83) when
the numbers of non-zero elements per column/row of H become infinite [MO03, MY02].

One shortcoming of this LDPC-based scheme in the current suggestion is the
computational difficulty at the encoding stage. Since finding z for a given s, where both
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are discrete variables, is a non-trivial search problem that becomes practically difficult as
the message length N increases. A naive use of the BP/TAP approach does not serve as a
satisfiable approximation algorithm in this case since encoding requires selection of a single
vector z, whereas the BP/TAP method generally calculates variable averages over the posterior
distribution in which clues for selecting a single vector are erased. However, this difficulty
may be resolved by certain advanced methods [MPZ02] although further investigation is
necessary.

Another drawback of the current method is the difficulty in directly extending the scheme
to biased sources. It can be shown that for a uniformly biased Boolean source characterized by
P(s) = ∏N

i=1 psi (1 − p)1−si , where 0 � p � 1, the rate-distortion function (83) is modified
to

R(D) =
{

H2(p) − H2(D) for 0 < D < p

0 for p � D � 1
(85)

which indicates that the data size can be reduced further than equation (83) for biased sources
because the original message distribution in itself includes some redundancy. This limit can
be achieved by appropriately constructing biased representative vectors that approximate the
biased vectors with the required distortion using as little information as possible. However,
as addition modulo 2 generally reduces the statistical bias of each bit, construction of such
representative vectors by a linear map (84) is difficult; this prevents the current method from
saturating the rate-distortion function of biased source (85). In a recent study [HKN02], this
difficulty has been resolved by replacing the linear map (84) with a non-linear map constructed
by perceptrons which are characterized by non-monotonic transfer functions of a specific type
[vMWB00].

6.4. Error correction in a broadcast channel

As most existing codes are constructed for simple point-to-point communication, they do
not necessarily offer the optimal performance for multi-terminal communication such as
the Internet, mobile phones and satellite communication. Designing codes that utilize
characteristic features of these communication channels may enhance their performance; this
would greatly benefit overloaded communication channels that suffer from an ever increasing
information flow.

The broadcast channel, which models television and radio broadcasting, is one of the
most fundamental examples of multi-terminal communication [CT91]. We here show how
LDPC codes can be utilized for improving the communication performance in a broadcasting
set-up.

In a general scenario, a single sender (station) broadcasts a codeword composed of
different messages to multiple receivers. For simplicity, we focus on the case of two receivers;
a single codeword t of N bits, comprising two messages s1 (NR1 bits) and s2 (NR2 bits),
is transmitted to two receivers. As each channel is noisy, receivers 1 and 2 obtain two
corrupted codewords r1 and r2, respectively, which is modelled by a conditional probability
P(r1, r2|t). The received codewords are decoded by respective receivers to retrieve only the
message addressed to each of them.

Combining codes is a known empirical strategy for designing high performance
communication schemes for broadcast channels on the basis of multiple linear error-correcting
codes of relatively short message lengths [MS77, vG83, vG84]. Inspired by this, the
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Figure 15. (a) A broadcast channel of a single station and two receivers. (b) A schematic profile
of Cover’s limit (thick full curve). The dashed line indicates the time-sharing limit achievable by
concatenating two independent codes.

performance of a linearly combined coding scheme was recently examined for LDPC codes
[NKMZS03]. The code is specified by a parity check matrix of upper triangular form

H =
(

H1 H2

0 H3

)
(86)

where the sizes of sub-matrices H1,H2,H3 are [(1 − α)N − R1N ] × (1 − α)N , [(1 − α)N −
R1N ] × αN and [αN − R2N ] × αN , respectively.

Based on this matrix, the generator matrix GT is constructed as

GT =
(

GT
1 GT

2

0 GT
3

)
(87)

where Gt
i(i = 1, 3) are systematically designed so as to satisfy HiG

T
i = 0 (mod 2) and

GT
2 = −HT

1

[
H1H

T
1

]−1[
H2G

T
3

]
. In this scheme, two messages are encoded into a single

codeword using GT as t = GT (s1s2)
T (mod 2). On the other hand, two corrupted codewords

r1 and r2 are independently decoded by each receiver solving the parity check equations
zi = Hri = Hni (mod 2) (i = 1, 2).

Analogous to the case of single channels, error free communication becomes theoretically
possible if the corresponding code rate vector (R1, R2) is placed within a certain convex region,
which is termed the capacity region, when the code length grows infinite. In particular, the
capacity region can be analytically expressed as

R2 < 1 − H2(δ ∗ p2) R1 < H2(δ ∗ p1) − H2(p2) (88)

where the noise models for receivers 1 and 2 are assumed as BSC specified by flip rates p1

and p2 (< p1), respectively. Here, we introduce the notation δ ∗ p = δ(1 − p) + (1 − δ)p.
Equation (88) is often termed Cover’s capacity, depicted by a solid curve in figure 15.
Unfortunately, the derivation of Cover’s capacity is non-constructive and offers few clues for
designing efficient practical codes. Furthermore, even achieving the time-sharing capacity (a
dotted straight line in figure 15), which is theoretically achievable by simple concatenation of
two independent codewords, separately optimized for each channel, is in practice never trivial,
as there are no known codes that saturate Shannon’s bound even for a single channel.

A statistical mechanics based analysis for the broadcast channel of this type reveals that the
suggested linearly combined LDPC coding scheme provides an improved performance over the
simple concatenation method, in both potential and practical limits, when the number of non-
zero elements per column/row in the parity check matrix is finite [NKMZS03]. Unfortunately,
it was also shown that the optimal performance achievable by this scheme cannot go beyond the
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Figure 16. (a) Modulation in conventional CDMA, where random modulation sequences are
used to generate the transmitted signal from the original message. (b) LDPC coding of the source
sequences si prior to modulation by random modulation sequences ξi . Demodulation and decoding
provide the estimates ŝi .

time-sharing capacity even theoretically. This analysis implies that different coding schemes
such as non-linear codes should be examined for achieving Cover’s limit.

6.5. LDPC for CDMA

Multiple access communication is at the opposite end to broadcasting, where multiple sources
transmit simultaneously to a single receiver; the task of the receiver is to separate the combined
(possibly corrupted) signal and retrieve the original sources. Several methods can be used
for separating the sources; two obvious solutions are for the different sources to transmit at
different times or using different frequencies [Ver98]. A different, arguably more efficient,
approach is based on code division multiple access (CDMA), where messages are encoded
prior to transmission.

Conventional modulation techniques are based on modulating each signal by a random
modulation vector shown schematically in figure 16(a). Demodulation is then carried out by
multiplying the received signal by the modulation sequence for each source and estimating the
original message. A statistical mechanics based analysis of conventional CDMA modulation
was recently introduced by Tanaka [Tan02].

The idea of combining LDPC codes with CDMA systems was originally introduced in
[dBD03, dBD02, ADU03]. The idea is to encode the messages by different LDPC codes
prior to the modulation stage as described schematically in figure 16(b). Results obtained
by computer simulations, and after carefully designing LDPC codes by DE, show excellent
performance [ADU03]. However, these studies are limited to cases where the number of
users is O(1) (one exception is in [RCGV02], where the number of users is expected to be
large; however, it relies on the assumption of near-capacity-approaching LDPC codes being
available).

A recent study [TS03b, TS03a] offers a statistical mechanics based analysis of the joint
detection/decoding for a LDPC-coded CDMA system in the large-system limit. The analysis
provides both practical and theoretical limitations of the suggested method obtained from the
statistical mechanics based analysis, in the form of dynamical and thermodynamical transition
points, respectively. The results reported indicate that while the theoretical limits of the new
methods are excellent, the practical performance is limited by a relatively low dynamical
transition point [TS03b, TS03a]. However, the analysis was carried out for regular LDPC
codes; it is highly likely that practical performance can be pushed close to the theoretical
limits by clever irregular code designs.
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(a)

s → r: Easy

(b)

r → s:

{
Easy with a secret key

Hard without a secret key

Figure 17. Required properties of a public key cryptosystem. (a) A plain text s is encrypted into
a cipher text r using the public key with a low computational cost. (b) Decryption of the cipher
text r is computationally hard without utilizing the secret key, while it can be easily carried out if
the secret key is available.

6.6. Public key cryptography

Public-key cryptography plays an important role in many aspects of modern information
transmission, for instance, in the areas of electronic commerce and Internet-based
communication. It makes it possible for the service provider to distribute a public key
which may be used to encrypt messages in a manner that can only be decrypted by the service
provider [DH76] (figure 17). The on-going quest for safer and more efficient cryptosystems
produced many useful methods over the years such as the Rivest–Shamir–Adleman (RSA)
[RSA78], ElGammal [ElG85] and McEliece cryptosystems [McE78] to name but a few. We
here show that another example of such a system, which is somewhat similar to the one
presented by McEliece, can be devised on the basis of significantly different behaviour for
LDPC codes of the MN- and Sourlas-types [KMS00a, SKM01].

In the suggested cryptosystem, a plaintext represented by a K-dimensional Boolean vector
s is encrypted to the N-dimensional Boolean ciphertext r utilizing a predetermined Boolean
matrix GT of dimensionality N × K , and a corrupting N-dimensional vector n, the elements
of which become 1 with probability p and 0, otherwise, in the following manner

r = GT t + n (mod 2). (89)

The matrix GT and the flip probability p constitute the public key. The corrupting vector n is
generated in the transmitting terminal.

The matrix GT , which is at the centre of the encryption/decryption process, is constructed
by randomly choosing a K × K dense invertible matrix D and two randomly selected LDPC
matrices A (of dimensionality N × K) and B (of dimensionality N × N and invertible), via
GT = B−1AD (mod 2). Similarly for the MN codes, the matrices A and B are characterized
by j and l non-zero elements per column and k and l non-zero elements per row, respectively, in
the simplest case, whereas irregular construction using varying k, j and l for each column/row
may also be considered. The parameters j, k and l define a particular cryptosystem while the
matrices A,B and D constitute the private key.

The authorized user may decrypt the ciphertext r in a similar manner to the MN codes.
Namely, a parity check equation of the form

z = Br = A(Ds) + Bn (mod 2) (90)

which is offered by multiplying the ciphertext r (89) by the private key B, is first solved for
s̃ = Ds using the BP/TAP algorithm. Due to properties of the MN codes, this is easy if p
is set below the dynamical transition point pd that is determined by the set of (j, k, l). After
that, the plain text is finally retrieved as s = D−1s̃.

On the other hand, an unauthorized user must extract s from equation (89) knowing only
the ciphertext r and the public key (GT , p). The first straightforward attempt to enumerate
all possible s is clearly doomed, unless p is vanishingly small, enough to corrupt just a few
bits. Decomposing GT into a combination of sparse and dense matrices is known to belong
to a class of NP-complete problems [GJ79].
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Another approach is to approximately decrypt r using the BP/TAP scheme, which yields
an effectively identical decoding problem to that of the Sourlas-type codes, with the generator
matrix GT being dense. However, due to properties of the Sourlas codes, finding solutions
to equation (89) is strongly dependent on initial conditions. In particular, when GT is dense,
which is the case in the current problem, for all initial conditions other than the plaintext
itself, the BP/TAP algorithm fails to converge to the plaintext solution [KMS00a, Mac99,
KS87]. Obtaining the correct solution for equation (89) without knowledge of the private
key will therefore become unfeasible, which implies that decryption by unauthorized users
is practically impossible. Several attacks by unauthorized parties who have acquired partial
knowledge of private key components and/or of the plaintext have been recently studied,
showing that the cryptosystem is fairly secure [SSK03].

Before closing this section, it may be worthwhile to briefly compare the current LDPC-
based method to the leading public key cryptosystem of RSA [RSA78]. RSA decryption takes
O(K3) operations while the current method naively requires O(K2) operations, which can
be further reduced to O(K log K) by constructing a dense matrix D as a product of random
permutation and triangular matrices. From this aspect, the LDPC-based scheme may be
superior to the RSA cryptosystem. Encryption cost is O(K2), which is similar to that of RSA,
whereas inverting the matrices B and D is carried out only once and is of O(K3). A major
drawback of the current method is the size of the public key. Since GT is a dense matrix,
the size of the public key is of O(N × K), while that for RSA is only O(K). However,
as the transmission of the public key is carried out only once, this may not be of great
significance.

7. Summary

In summary, we have surveyed recent progress in statistical mechanics research on low-density
parity-check codes. Identifying the similarity between codes defined by a sparse matrix and
Ising spin systems of multi-spin interaction makes it possible to analyse and develop a family
of high-performance error correcting codes. This relies on employing methods from statistical
mechanics in general and the theory of spin glasses in particular. The efficacy of this approach
is not limited to basic error correction, similar approaches have also been successfully applied
to several other coding schemes such as data compression, multi-terminal data transmission,
cryptography, etc.

Research activities in these directions revealed great similarity and some differences,
in both the problems studied and methods used, between information sciences and physics,
which makes it much easier than ever before to apply methods of one discipline to problems in
another. We hope that the current review will contribute to promoting such cross-disciplinary
studies.
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Linköping University

[WS87a] Wong K and Sherrington D 1987 Graph bipartitioning and spin glasses on a random network of fixed
finite valence J. Phys. A: Math. Gen. 20 L793–9

[WS87b] Wong K and Sherrington D 1987 Graph bipartitioning and the Bethe spin-glass J. Phys. A: Math. Gen.
20 L785–91

[YFW02] Yedidia J S, Freeman W T and Weiss Y 2002 Constructing free energy approximations and generalised
belief propagation algorithms Tech. Report TR2002-35 Mitsubishi Electric Research Laboratories

[YZB97] Yang E, Zhang Z and Berger T 1997 Fixed-slope universal lossy data compression IEEE Trans. Inform.
Theory 43 1465–76

[ZL77] Ziv J and Lempel A 1977 A universal algorithm for sequential data compression IEEE Trans. Inform.
Theory 23 337–43


